促进膜融合的组合物和其用途

文档序号:1409287 发布日期:2020-03-06 浏览:25次 >En<

阅读说明:本技术 促进膜融合的组合物和其用途 (Composition for promoting membrane fusion and use thereof ) 是由 G.A.冯马尔特扎恩 J.M.米尔维德 M.T.米 J.R.鲁本斯 N.W.斯特宾斯 M. 于 2018-05-08 设计创作,主要内容包括:在一些方面,本文描述了融合体组合物和方法,其包含有包含融合剂的膜封闭制剂。在一些实施例中,所述融合体可靶细胞,从而将复合生物制剂递送至靶细胞的细胞质。(In some aspects, described herein are fusion compositions and methods comprising a membrane blocking formulation comprising a fusion agent. In some embodiments, the fusion can target a cell, thereby delivering the complex biological agent to the cytoplasm of the target cell.)

促进膜融合的组合物和其用途

相关申请

本申请要求2017年5月8日提交的美国序列号62/502,998、2017年10月20日提交的美国序列号62/575,147和2017年12月7日提交的美国序列号62/595,862的优先权,其各自以全文引用的方式并入本文中。

背景技术

复合生物制剂是用于多种疾病的有前景的治疗候选物。但是,由于质膜充当细胞与细胞外空间之间的屏障,因此难以将大的生物制剂递送至细胞中。本领域中需要将复合生物制剂递送至个体的细胞中的新方法。

发明内容

膜融合是受精、发育、免疫反应和肿瘤发生等多种生物过程中所必需的。本公开提供将复合生物货物递送至细胞的基于融合的方法。

因此,在一些方面,本公开提供一种融合体(fusosome),其包含脂质双层、被脂质双层包围的内腔和融合剂(fusogen)。融合体可用于例如将内腔或脂质双层中的货物递送至靶细胞。货物包括例如治疗性蛋白质、核酸和小分子。

在一些方面,本公开提供一种融合体,其包含:

(a)脂质双层,

(b)被脂质双层包围的内腔(例如包含细胞溶质);

(c)外源或过表达的融合剂,例如其中融合剂安置于脂质双层中,

其中融合体衍生自源细胞;且

其中融合体具有部分或完全核灭活(例如核去除)。

在一些实施例中,存在以下中的一个或多个:

i)融合体包含细胞生物物质或由其组成;

ii)融合体包含去核细胞;

iii)融合体包含灭活的核;

iv)融合体与靶细胞的融合率高于非靶细胞,例如高至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍、5倍、10倍、20倍、50倍或100倍,例如在实例54的分析中;

v)融合体与靶细胞的融合率高于其它融合体,例如高至少10%、20%、30%、40%、50%、60%、70%、80%或90%、2倍、3倍、4倍、5倍、10倍、20倍、50倍或100倍,例如在实例54的分析中;

vi)融合体与靶细胞的融合率使得在24、48或72小时之后,融合体中的药剂递送到至少10%、20%、30%、40%、50%、60%、70%、80%或90%的靶细胞,例如在实例54的分析中;

vii)融合剂以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数存在,例如根据实例29的分析所测量;

viii)融合体以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含治疗剂,例如根据实例43或156的分析所测量;

ix)融合剂的拷贝数与治疗剂的拷贝数的比为1,000,000:1至100,000:1、100,000:1至10,000:1、10,000:1至1,000:1、1,000:1至100:1、100:1至50:1、50:1至20:1、20:1至10:1、10:1至5:1、5:1至2:1、2:1至1:1、1:1至1:2、1:2至1:5、1:5至1:10、1:10至1:20、1:20至1:50、1:50至1:100、1:100至1:1,000、1:1,000至1:10,000、1:10,000至1:100,000或1:100,000至1:1,000,000;

x)融合体包含与源细胞基本上类似的脂质组成,或其中CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG中的一个或多个在源细胞中的对应脂质水平的10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%或75%内;

xi)融合体包含与源细胞类似的蛋白质组学组成,例如使用实例42或155的分析;

xii)融合体的脂质:蛋白质比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例49的分析所测量;

xiii)融合体的蛋白质:核酸(例如DNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例50的分析所测量;

xiv)融合体的脂质:核酸(例如DNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例51或159的分析所测量;

xv)融合体于个体,例如小鼠中的半衰期在参考细胞(例如源细胞)的半衰期的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例75的分析;

xvi)融合体跨膜运输葡萄糖(例如标记的葡萄糖,例如2-NBDG),例如比阴性对照(例如不存在葡萄糖的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%(例如多约11.6%),例如使用实例64的分析所测量;

xvii)融合体于内腔中的酯酶活性在参考细胞(例如源细胞或小鼠胚胎成纤维细胞)中的酯酶活性的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如使用实例66的分析;

xviii)融合体的代谢活性水平在参考细胞(例如源细胞)中的柠檬酸合酶活性的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例68中所述;

xix)融合体的呼吸水平(例如耗氧速率)在参考细胞(例如源细胞)中的呼吸水平的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例69中所述;

xx)融合体包含至多18,000、17,000、16,000、15,000、14,000、13,000、12,000、11,000或10,000MFI的膜联蛋白-V染色水平,例如使用实例70的分析,或其中相比于实例70的分析中的用甲萘醌处理的另外类似的融合体的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%或50%的膜联蛋白-V染色水平,或其中相比于实例70的分析中的用甲萘醌处理的巨噬细胞的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%或50%的膜联蛋白-V染色水平,

xxi)相比于源细胞,融合体的miRNA含量水平为至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如根据实例39的分析;

xxii)相比于源细胞,融合体的可溶性:不溶性蛋白质比在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大内,例如在源细胞的1%-2%、2%-3%、3%-4%、4%-5%、5%-10%、10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%或80%-90%内,例如根据实例47的分析;

xxiii)融合体的LPS水平为源细胞的LPS含量的小于5%、1%、0.5%、0.01%、0.005%、0.0001%、0.00001%或更小,例如根据质谱所测量,例如在实例48的分析中;

xxiv)融合体能够进行信号转导,例如传输细胞外信号,例如回应于胰岛素的AKT磷酸化,或回应于胰岛素的葡萄糖(例如标记的葡萄糖,例如2-NBDG)摄取,例如比阴性对照(例如不存在胰岛素的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,例如使用实例63的分析;

xxv)融合体在向例如小鼠的个体施用时靶向组织,例如肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳或眼睛,例如其中在24、48或72小时之后,施用的融合体群体中至少0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的融合体存在于靶组织中,例如根据实例87或100的分析;

xxvi)相比于由参考细胞(例如源细胞或骨髓基质细胞(BMSC))诱导的近分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的近分泌信号传导水平,例如根据实例71的分析;

xxvii)相比于由参考细胞(例如源细胞或巨噬细胞)诱导的旁分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%的旁分泌信号传导水平,例如根据实例72的分析;

xxviii)相比于参考细胞(例如源细胞或C2C12细胞)中聚合肌动蛋白的水平,融合体以在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内的水平聚合肌动蛋白,例如根据实例73的分析;

xxix)融合体的膜电位在参考细胞(例如源细胞或C2C12细胞)的膜电位的约1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例74的分析,或其中融合体具有约-20至-150mV、-20至-50mV、-50至-100mV或-100至-150mV的膜电位;

xxx)融合体能够自血管外渗,例如以源细胞或与源细胞相同类型的细胞的外渗率的至少1%、2%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的速率,例如使用实例57的分析,例如其中源细胞为嗜中性粒细胞、淋巴细胞、B细胞、巨噬细胞或NK细胞;

xxxi)融合体能够穿过细胞膜,例如内皮细胞膜或血脑屏障;

xxxii)融合体能够分泌蛋白质,例如以比参考细胞(例如小鼠胚胎成纤维细胞)大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的速率,例如使用实例62的分析;

xxxiii)融合体符合药物或良好生产规范(GMP)标准;

xxxiv)融合体是根据良好生产规范(GMP)制成的;

xxxv)融合体的病原体水平低于预定参考值,例如基本上不含病原体;

xxxvi)融合体的污染物水平低于预定参考值,例如基本上不含污染物;

xxxvii)融合体具有低免疫原性,例如如本文所述;

xxxviii)源细胞选自嗜中性粒细胞、粒细胞、间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞;或

xxxix)源细胞不是293细胞、HEK细胞、人类内皮细胞或人类上皮细胞、单核细胞、巨噬细胞、树突状细胞或干细胞。

在一些方面,本公开还提供一种融合体,其包含:

a)脂质双层和可与水溶液(例如水)混溶的内腔,其中融合体衍生自源细胞,

b)安置于脂质双层中的外源或过表达的融合剂,和

c)安置于内腔中的细胞器,例如治疗有效数目的细胞器。

在一些实施例中,存在以下中的一个或多个:

i)源细胞选自内皮细胞、巨噬细胞、嗜中性粒细胞、粒细胞、白细胞、干细胞(例如间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞)、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞;

ii)细胞器选自高尔基体(Golgi apparatus)、溶酶体、内质网、线粒体、液泡、内体、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、刺丝囊、过氧化物酶体、蛋白酶体、囊泡和应激颗粒;

iii)融合体的尺寸大于5μm、10μm、20μm、50μm或100μm;

i)融合体或包含多个融合体的组合物或制剂的密度不在1.08g/ml与1.12g/ml之间,例如融合体的密度为1.25g/ml+/-0.05,例如根据实例33的分析所测量;

iv)融合体未被循环中的清除系统或肝窦中的库普弗(Kupffer)细胞捕获;

v)源细胞不是293细胞;

vi)源细胞未被转化或永生化;

vii)源细胞使用除腺病毒介导的永生化以外的方法来转化或永生化,例如通过自发突变或端粒酶表达永生化;

viii)融合剂不是VSVG、SNARE蛋白或分泌性颗粒蛋白;

ix)融合体不包含Cre或GFP,例如EGFP;

x)融合体进一步包含除Cre或GFP,例如EGFP以外的外源蛋白

xi)融合体例如在内腔中进一步包含外源核酸(例如RNA,例如mRNA、miRNA或siRNA)或外源蛋白(例如抗体,例如抗体);或

xii)融合体不包含线粒体。

在一些方面,本公开还提供一种融合体,其包含:

(a)脂质双层,

(b)被脂质双层包围的内腔(例如包含细胞溶质),

(c)外源或过表达的融合剂,例如其中融合剂安置于脂质双层中,和

(d)机能核,

其中融合体衍生自源细胞。

在一些实施例中,存在以下中的一个或多个:

i)源细胞不是树突状细胞或肿瘤细胞,例如源细胞选自内皮细胞、巨噬细胞、嗜中性粒细胞、粒细胞、白细胞、干细胞(例如间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞)、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞;

ii)融合剂不是融合糖蛋白;

iii)融合剂为除致育素-β以外的哺乳动物蛋白,

iv)融合体具有低免疫原性,例如如本文所述;

v)融合体符合药物或良好生产规范(GMP)标准;

vi)融合体是根据良好生产规范(GMP)制成的;

vii)融合体的病原体水平低于预定参考值,例如基本上不含病原体;或

viii)融合体的污染物水平低于预定参考值,例如基本上不含污染物。

在一些方面,本公开还提供包含多个融合体的纯化的融合体组合物,其中至少一个融合体包含:

a)脂质双层和水性内腔,其中融合体衍生自源细胞,和

b)安置于脂质双层中的外源或过表达的融合剂,

其中融合体在低于4、0、-4、-10、-12、-16、-20、-80或-160C的温度下。

在一些方面,本公开还提供包含多个融合体的纯化的融合体组合物,其中至少一个融合体包含:

a)脂质双层和水性内腔,和

b)安置于脂质双层中的外源或过表达的蛋白质融合剂,

其中融合体在低于4、0、-4、-10、-12、-16、-20、-80或-160C的温度下。

在一些方面,本公开还提供一种融合体组合物,其包含多个本文所述的融合体。

在一些方面,本公开还提供一种融合体组合物,其包含衍生自源细胞的多个融合体,其中多个融合体包含:

(a)脂质双层,

(b)包含细胞溶质的内腔,其中内腔被脂质双层包围;

(c)安置于脂质双层中的外源或过表达的融合剂,

(d)货物;且

其中融合体不包含核;

其中融合体组合物中的病毒衣壳蛋白的量小于总蛋白的1%;

其中当在内吞作用抑制剂存在下与靶细胞群体接触时,和当与未用内吞作用抑制剂处理的参考靶细胞群体接触时,相比于参考靶细胞群体,多个融合体将货物递送至靶细胞群体中至少30%数目的细胞。

在一些方面,本公开还提供一种融合体组合物,其包含多个衍生自源细胞的融合体,且其中多个融合体包含:

(a)脂质双层,

(b)包含细胞溶质的内腔,其中内腔被脂质双层包围;

(c)安置于脂质双层中的外源或过表达的重靶向融合剂;

(d)货物;且

其中融合体不包含核;

其中融合体组合物中的病毒衣壳蛋白的量小于总蛋白的1%;

其中:

(i)当多个融合体与包含靶细胞和非靶细胞的细胞群体接触时,货物存在于比非靶细胞多至少2倍、5倍、10倍、20倍、50倍或100倍的靶细胞中,或

(ii)多个融合体与靶细胞的融合率比与非靶细胞高至少50%。

在一些方面,本公开还提供一种融合体组合物,其包含多个衍生自源细胞的融合体,且其中多个融合体包含:

(a)脂质双层,

(b)被脂质双层包围的内腔;

(c)外源或过表达的融合剂,其中融合剂安置于脂质双层中;和

(d)货物;

其中融合体不包含核;且

其中以下中的一个或多个(例如以下中的至少2、3、4或5个):

i)融合剂以至少1,000个拷贝的拷贝数存在;

ii)融合体以至少1,000个拷贝的拷贝数包含治疗剂;

iii)融合体包含脂质,其中CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG中的一个或多个在源细胞中的对应脂质水平的75%内;

iv)融合体包含与源细胞类似的蛋白质组学组成;

v)融合体能够进行信号转导,例如传输细胞外信号,例如回应于胰岛素的AKT磷酸化,或回应于胰岛素的葡萄糖(例如标记的葡萄糖,例如2-NBDG)摄取,例如比阴性对照(例如不存在胰岛素的另外类似的融合体)多至少10%;

vi)融合体在向例如小鼠的个体施用时靶向组织,例如肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳或眼睛,例如其中在24小时之后,施用的融合体群体中至少0.1%或10%的融合体存在于靶组织中;或

源细胞选自嗜中性粒细胞、粒细胞、间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞。

在一些方面,本公开还提供一种药物组合物,其包含本文所述的融合体组合物和药学上可接受的载体。

在某些方面,本公开还提供一种向个体(例如人类个体)、靶组织或细胞施用融合体组合物的方法,所述方法包含向个体施用包含多个本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物或使靶组织或细胞与其接触,由此向个体施用融合体组合物。

在某些方面,本公开还提供一种向个体、靶组织或细胞递送治疗剂(例如多肽、核酸、代谢物、细胞器或亚细胞结构)的方法,所述方法包含向个体施用多个本文所述的融合体、包含多个本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物或使靶组织或细胞与其接触,其中融合体组合物以使得治疗剂被递送的量和/或时间施用。

在某些方面,本公开还提供一种向个体、靶组织或细胞递送功能的方法,所述方法包含向个体施用多个本文所述的融合体、包含多个本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物或使靶组织或细胞与其接触,其中融合体组合物以使得功能被递送的量和/或时间施用。

在某些方面,本公开还提供一种将功能靶向至个体、靶组织或细胞的方法,所述方法包含向个体施用多个本文所述的融合体、包含多个本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物或使靶组织或细胞与其接触,其中融合体组合物以使得功能被靶向的量和/或时间施用。

在某些方面,本公开还提供一种调节,例如增强个体、靶组织或细胞的生物功能的方法,所述方法包含向个体施用包含多个本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物或使靶组织或细胞与其接触,由此调节个体的生物功能。

在某些方面,本公开还提供一种将功能递送或靶向至个体的方法,所述方法包含向个体施用包含多个包含所述功能的本文所述的融合体的融合体组合物、本文所述的融合体组合物或本文所述的药物组合物,其中融合体组合物以使得个体中的功能被递送或靶向的量和/或时间施用。在实施例中,个体患有癌症、发炎性病症、自身免疫疾病、慢性疾病、发炎、器官功能受损、传染病、退化性病症、遗传病或损伤。

在某些方面,本公开还提供一种制造融合体组合物的方法,其包含:

a)提供包含,例如表达融合剂的源细胞;

b)从源细胞产生融合体,其中融合体包含脂质双层、内腔和融合剂,由此产生融合体;和

c)将融合体配制成例如适合于向个体施用的药物组合物。

在实施例中,存在以下中的一个或多个:

i)源细胞不是293细胞、HEK细胞、人类内皮细胞或人类上皮细胞;

ii)融合剂不是病毒蛋白;

iii)融合体或包含多个融合体的组合物或制剂的密度不在1.08g/ml与1.12g/ml之间,例如

iv)融合体的密度为1.25g/ml+/-0.05,例如根据实例33的分析所测量;

v)融合体未被循环中的清除系统或肝窦中的库普弗细胞捕获;

vi)融合体未被个体的网状内皮系统(RES)捕获,例如根据实例76的分析;

vii)当向个体施用多个融合体时,所述多个融合体中的小于1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%在24、48或72小时之后被RES捕获或未被RES捕获,例如根据实例76的分析;

viii)融合体的直径大于5μm、6μm、7μm、8μm、10μm、20μm、50μm、100μm、150μm或200μm;

ix)融合体包含细胞生物物质;

x)融合体包含去核细胞;或

xi)融合体包含灭活的核。

在某些方面,本公开提供一种制造融合体组合物的方法,其包含:

a)提供多个本文所述的融合体、本文所述的融合体组合物或本文所述的药物组合物;和

b)将融合体配制成例如适合于向个体施用的药物组合物。

在某些方面,本公开提供一种制造融合体组合物的方法,其包含:

a)提供,例如产生多个本文所述的融合体或本文所述的融合体组合物;和

b)分析多个融合体中的一个或多个以确定是否符合一个或多个(例如2、3或更多个)标准。在实施例中,标准选自:

i)融合体与靶细胞的融合率高于非靶细胞,例如高至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍、5倍、10倍、20倍、50倍或100倍,例如在实例54的分析中;

ii)融合体与靶细胞的融合率高于其它融合体,例如高至少10%、20%、30%、40%、50%、60%、70%、80%或90%,例如在实例54的分析中;

iii)融合体与靶细胞的融合率使得在24、48或72小时之后,融合体中的药剂递送到至少10%、20%、30%、40%、50%、60%、70%、80%或90%的靶细胞,例如在实例54的分析中;

iv)融合剂以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数存在,例如根据实例29的分析所测量;

v)融合体以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含治疗剂,例如根据实例43或156的分析所测量;

vi)融合剂的拷贝数与治疗剂的拷贝数的比为1,000,000:1、100,000:1、10,000:1、1,000:1、100:1至50:1、1,000,000:1至100,000:1、100,000:1至10,000:1、10,000:1至1,000:1、1,000:1至100:1、100:1至50:1、50:1至20:1、20:1至10:1、10:1至5:1、5:1至2:1、1:1至2:1、2:1至1:1、1:1至1:2、1:2至1:5、1:5至1:10、1:10至1:20、1:20至1:50、1:50至1:100、1:100至1:1,000、1:1,000至1:10,000、1:10,000至1:100,000或1:100,000至1:1,000,000或1:20至1:50、1:100、1,000:1、10,000:1、100,000:1至1,000,000:1;

vii)融合体包含与源细胞基本上类似的脂质组成,或其中CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG中的一个或多个在源细胞中的对应脂质水平的10%、15%、20%、25%、30%、35%、40%、45%、50%或75%内;

viii)融合体包含与源细胞类似的蛋白质组学组成,例如使用实例42或155的分析;

ix)融合体的脂质:蛋白质比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例49的分析所测量;

x)融合体的蛋白质:核酸(例如DNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例50的分析所测量;

xi)融合体的脂质:核酸(例如DNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例51或159的分析所测量;

xii)融合体于个体,例如小鼠中的半衰期在参考细胞(例如源细胞)的半衰期的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例75的分析;

xiii)融合体跨膜运输葡萄糖(例如标记的葡萄糖,例如2-NBDG),例如比阴性对照(例如不存在葡萄糖的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,例如使用实例64的分析所测量;

xiv)融合体于内腔中的酯酶活性在参考细胞(例如源细胞或小鼠胚胎成纤维细胞)中的酯酶活性的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如使用实例66的分析;

xv)融合体的代谢活性水平在参考细胞(例如源细胞)中的代谢活性(例如柠檬酸合酶活性)的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例68中所述;

xvi)融合体的呼吸水平(例如耗氧速率)在参考细胞(例如源细胞)中的呼吸水平的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例69中所述;

xvii)融合体包含至多18,000、17,000、16,000、15,000、14,000、13,000、12,000、11,000或10,000MFI的膜联蛋白-V染色水平,例如使用实例70的分析,或其中相比于实例70的分析中的用甲萘醌处理的另外类似的融合体的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%或50%的膜联蛋白-V染色水平,或其中相比于实例70的分析中的用甲萘醌处理的巨噬细胞的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%或50%的膜联蛋白-V染色水平,

xviii)相比于源细胞,融合体的miRNA含量水平为至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如根据实例39的分析;

xix)相比于源细胞,融合体的可溶性:不溶性蛋白质比在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大内,例如在源细胞的1%-2%、2%-3%、3%-4%、4%-5%、5%-10%、10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%或80%-90%内,例如根据实例47的分析;

xx)融合体的LPS水平为源细胞的LPS含量或融合体的脂质含量的小于5%、1%、0.5%、0.01%、0.005%、0.0001%、0.00001%或更小,例如根据质谱所测量,例如在实例48的分析中;

xxi)融合体能够进行信号转导,例如传输细胞外信号,例如回应于胰岛素的AKT磷酸化,或回应于胰岛素的葡萄糖(例如标记的葡萄糖,例如2-NBDG)摄取,例如比阴性对照(例如不存在胰岛素的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,例如使用实例63的分析;

xxii)相比于由参考细胞(例如源细胞或骨髓基质细胞(BMSC))诱导的近分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的近分泌信号传导水平,例如根据实例71的分析;

xxiii)相比于由参考细胞(例如源细胞或巨噬细胞)诱导的旁分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%的旁分泌信号传导水平,例如根据实例72的分析;

xxiv)相比于参考细胞(例如源细胞或C2C12细胞)中聚合肌动蛋白的水平,融合体以在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内的水平聚合肌动蛋白,例如根据实例73的分析;

xxv)融合体的膜电位在参考细胞(例如源细胞或C2C12细胞)的膜电位的约1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例74的分析,或其中融合体具有约-20至-150mV、-20至-50mV、-50至-100mV或-100至-150mV的膜电位;

xxvi)融合体能够分泌蛋白质,例如以比参考细胞(例如小鼠胚胎成纤维细胞)大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的速率,例如使用实例62的分析;或

xxvii)融合体具有低免疫原性,例如如本文所述;和

c)(任选地)如果符合标准中的一个或多个,则批准释放多个融合体或融合体组合物。

在某些方面,本公开还提供一种制造融合体组合物的方法,其包含:

a)提供,例如产生多个本文所述的融合体或本文所述的融合体组合物;和

b)分析多个融合体中的一个或多个以确定以下因素中的一个或多个的存在或水平:

i)免疫原性分子,例如免疫原性蛋白质,例如如本文所述;

ii)病原体,例如细菌或病毒;或

iii)污染物;和

c)(任选地)如果因素中的一个或多个低于参考值,则批准释放多个融合体或融合体组合物。

在一些方面,本公开还提供向人类个体施用融合体组合物的方法,其包含:

a)在允许将第一融合剂安置于个体的一个或多个靶细胞中的条件下向个体施用第一融合剂,其中以下中的一个或多个:

i)施用第一融合剂包含在允许第一融合剂在一个或多个靶细胞中表达的条件下施用编码第一融合剂的核酸,或

ii)第一融合剂不包含卷曲螺旋基序,和

b)向人类个体施用包含多个融合体的融合体组合物,所述融合体包含第二融合剂,其中第二融合剂与第一融合剂相容,

由此向个体施用融合体组合物。

在一些方面,本公开还提供一种向个体递送治疗剂的方法,其包含:

a)在允许将第一融合剂安置于个体的一个或多个靶细胞中的条件下向个体施用第一融合剂,其中以下中的一个或多个:

i)施用第一融合剂包含在允许第一融合剂在一个或多个靶细胞中表达的条件下施用编码第一融合剂的核酸,或

ii)第一融合剂不包含卷曲螺旋基序,和

b)向人类个体施用包含多个融合体的融合体组合物,所述融合体包含第二融合剂和治疗剂,其中第二融合剂与第一融合剂相容,

由此向个体递送治疗剂。

在一些方面,本公开还提供一种调节,例如增强个体的生物功能的方法,其包含:

a)在允许将第一融合剂安置于个体的一个或多个靶细胞中的条件下向个体施用第一融合剂,其中以下中的一个或多个:

i)施用第一融合剂包含在允许第一融合剂在一个或多个靶细胞中表达的条件下施用编码第一融合剂的核酸,或

ii)第一融合剂不包含卷曲螺旋基序,和

b)向人类个体施用包含多个融合体的融合体组合物,所述融合体包含第二融合剂,其中第二融合剂与第一融合剂相容,

由此调节个体的生物功能。

在一个方面,本发明包括包含线粒体和融合剂的融合体。

在一个方面,本发明包括包含多个融合体的组合物,其中至少一个融合体包含线粒体和融合剂。

在一些方面,本公开还提供一种评估个体的靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法,其包含提供来自已接受融合体组合物(例如本文所述的融合体组合物)的个体的生物样品,和进行分析以确定由生物样品中的靶细胞与如本文所述的融合体融合而产生的生物样品的一种或多种特性。在一些方面,本公开提供一种测量与靶细胞的融合的方法,例如如实例54或124中所述。在一些实施例中,确定生物样品的一种或多种特性包含确定:融合剂的存在、货物或的有效负载水平或与货物或有效负载相关的活性。

在一些方面,本公开提供一种评估个体的靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法,其包含提供来自已接受融合体组合物(例如如本文所述)的个体的生物样品,和关于融合剂,例如本文所述的融合剂的存在对生物样品进行测试。在一些情况下,相比于来自未接受融合体组合物的个体的对应生物样品中观测到的水平,检测到的融合剂的水平更高(例如高至少约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、600%、700%、800%、900%、1000%、2000%、3000%、4000%、5000%、10,000%、50,000%或100,000%)。在一些实施例中,个体与施用融合体组合物之前是相同个体,且在一些实施例中,个体是不同个体。

在一些方面,本公开提供一种评估个体的靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法,其包含提供来自已接受融合体组合物(例如如本文所述)的个体的生物样品,和关于货物或有效负载(例如由如本文所述的融合体递送)的存在对生物样品进行测试。在一些情况下,相比于来自未接受融合体组合物的个体的对应生物样品中观测到的水平,检测到的货物或有效负载的水平更高(例如高至少约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、600%、700%、800%、900%、1000%、2000%、3000%、4000%、5000%、10,000%、50,000%或100,000%)。在一些实施例中,个体与施用融合体组合物之前是相同个体,且在一些实施例中,个体是不同个体。

在一些方面,本公开提供一种评估靶细胞的融合体含量(例如与个体的靶细胞融合的融合体)的方法,其包含提供来自已接受融合体组合物(例如如本文所述)的个体的生物样品,和关于与融合体组合物相关的活性,例如与由融合体组合物递送的货物或有效负载相关的活性的改变对生物样品进行测试。在一些情况下,相对于来自未接受融合体组合物的个体(例如在施用融合体组合物之前的相同个体)的对应生物样品的活性水平,检测到的活性水平提高例如至少约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、600%、700%、800%、900%、1000%、2000%、3000%、4000%、5000%、10,000%、50,000%或100,000%。在一些情况下,相对于来自未接受融合体组合物的个体的对应生物样品的活性水平,检测到的活性水平降低例如至少约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、200%、300%、400%、500%、600%、700%、800%、900%、1000%、2000%、3000%、4000%、5000%、10,000%、50,000%或100,000%。在一些实施例中,个体与施用融合体组合物之前是相同个体,且在一些实施例中,个体是不同个体。

在一个方面,本公开提供一种评估融合体与个体的靶细胞的融合的方法,其包含提供来自已接受融合体组合物(例如如本文所述)的个体的生物样品和评估生物样品中未融合的融合体的水平。

本文的任何方面,例如上述的融合体、融合体组合物和方法可与本文的一个或多个实施例(例如下文的实施例)组合。

在一些实施例中,融合体能够将药剂,例如蛋白质、核酸(例如mRNA)、细胞器或代谢物递送(例如递送了)至靶细胞的细胞溶质。类似地,在一些实施例中,本文的方法包含将药剂递送至靶细胞的细胞溶质。在一些实施例中,药剂是靶细胞中不存在、突变或水平低于野生型的蛋白质(或编码蛋白质的核酸,例如编码蛋白质的mRNA)。在一些实施例中,靶细胞来自患有遗传病,例如单基因病,例如单基因细胞内蛋白质疾病的个体。在一些实施例中,药剂包含转录因子,例如外源转录因子或内源转录因子。在一些实施例中,融合体进一步包含或方法进一步包含递送一个或多个(例如至少2、3、4、5、10、20或50个)额外转录因子,例如外源转录因子、内源转录因子或其组合。

在一些实施例中,融合体包含多种药剂(例如至少2、3、4、5、10、20或50种药剂)(例如能够将其递送至靶细胞),其中多种药剂中的每一种作用于靶细胞中的途径的步骤,例如其中途径为生物合成途径、分解代谢途径或信号转导级联。在实施例中,多种药剂中的每一种上调所述途径或下调所述途径。在一些实施例中,融合体进一步包含或方法进一步包含递送一种或多种额外药剂(例如包含第二多种药剂),所述药剂不作用于所述途径的步骤,例如作用于第二途径的步骤。在一些实施例中,融合体包含多种药剂(例如至少2、3、4、5、10、20或50种药剂)(例如能够将其递送至靶细胞)或方法进一步包含递送所述多种药剂,多种药剂中的每一种为单一途径的一部分,例如其中所述途径为生物合成途径、分解代谢途径或信号转导级联。在一些实施例中,融合体进一步包含或方法进一步包含递送一种或多种额外药剂(例如包含第二多种药剂),所述药剂不是单一途径的一部分,例如是第二途径的一部分。

在一些实施例中,靶细胞包含聚集或错误折叠的蛋白质。在一些实施例中,融合体能够降低靶细胞中的聚集或错误折叠的蛋白质的水平(例如降低了其水平),或本文的方法包含降低靶细胞中的聚集或错误折叠的蛋白质的水平。

在一些实施例中,药剂选自转录因子、酶(例如核酶或胞质酶)、介导对DNA的序列特异性修饰的试剂(例如Cas9、ZFN或TALEN)、mRNA(例如编码细胞内蛋白质的mRNA)、细胞器或代谢物。

在一些实施例中,融合体能够将药剂,例如蛋白质递送(例如递送了)至靶细胞的细胞膜。类似地,在一些实施例中,本文的方法包含将药剂递送至靶细胞的细胞膜。在一些实施例中,递送蛋白质包含将编码蛋白质的核酸(例如mRNA)递送至靶细胞,使得靶细胞产生蛋白质且将其定位至膜。在一些实施例中,融合体包含或方法进一步包含递送蛋白质,且融合体与靶细胞的融合将蛋白质转移至靶细胞的细胞膜。在一些实施例中,药剂包含细胞表面配体或结合细胞表面受体的抗体。在一些实施例中,融合体进一步包含或方法进一步包含递送第二药剂,所述药剂包含或编码第二细胞表面配体或结合细胞表面受体的抗体,且任选地进一步包含或编码一个或多个额外细胞表面配体或结合细胞表面受体的抗体(例如1、2、3、4、5、10、20、50或更多个)。在一些实施例中,第一药剂和第二药剂形成复合物,其中任选地,复合物进一步包含一个或多个额外细胞表面配体。在一些实施例中,药剂包含或编码细胞表面受体,例如外源细胞表面受体。在一些实施例中,融合体进一步包含或方法进一步包含递送第二药剂,所述药剂包含或编码第二细胞表面受体,且任选地进一步包含或编码一个或多个额外细胞表面受体(例如1、2、3、4、5、10、20、50或更多个细胞表面受体)。

在一些实施例中,第一药剂和第二药剂形成复合物,其中任选地,复合物进一步包含一个或多个额外细胞表面受体。在一些实施例中,药剂包含或编码抗原或抗原呈递蛋白。

在一些实施例中,融合体能够将分泌药剂,例如分泌蛋白递送(例如递送了)至靶位点(例如胞外区),例如通过在允许靶细胞产生和分泌蛋白质的条件下将编码蛋白质的核酸(例如mRNA)递送至靶细胞。类似地,在一些实施例中,本文的方法包含递送如本文所述的分泌药剂。在实施例中,分泌蛋白是内源或外源的。在实施例中,分泌蛋白包含蛋白质治疗剂,例如抗体分子、细胞因子或酶。在实施例中,分泌蛋白包含自分泌信号传导分子或旁分泌信号传导分子。在实施例中,分泌药剂包含分泌性颗粒。

在一些实施例中,融合体能够对靶细胞(例如免疫细胞)重编程(例如重编程了),例如通过递送选自转录因子或mRNA的药剂,或多种所述药剂。类似地,在一些实施例中,本文的方法包含对靶细胞重编程。在实施例中,重编程包含通过诱导非多巴胺能神经元具有多巴胺能神经元的一个或多个特征,或通过诱导耗尽的T细胞具有非耗尽的T细胞(例如杀手T细胞)的一个或多个特征来诱导胰腺内分泌细胞具有胰腺β细胞的一个或多个特征。在一些实施例中,药剂包含抗原。在一些实施例中,融合体包含有包含抗原的第一药剂和包含抗原呈递蛋白的第二药剂。

在一些实施例中,融合体能够向靶细胞(例如免疫细胞)供给(例如供给了)一个或多个细胞表面受体。类似地,在一些实施例中,本文的方法包含供给一个或多个细胞表面受体。

在一些实施例中,融合体能够修饰(例如修饰了)靶肿瘤细胞。类似地,在一些实施例中,本文的方法包含修饰靶肿瘤细胞。在实施例中,融合体包含编码免疫刺激配体、抗原呈递蛋白、肿瘤抑制蛋白或促凋亡蛋白的mRNA。在一些实施例中,融合体包含能够降低靶细胞中免疫抑制配体、促有丝***信号或生长因子的水平的miRNA。

在一些实施例中,融合体包含免疫调节剂,例如免疫刺激剂。

在一些实施例中,融合体能够引起(例如引起了)靶细胞呈递抗原。类似地,在一些实施例中,本文的方法包含将抗原呈递到靶细胞上。

在一些实施例中,融合体促进靶组织中的再生。类似地,在一些实施例中,本文的方法包含促进靶组织中的再生。在实施例中,靶细胞为心肌细胞(cardiac cell),例如心肌细胞(cardiomyocyte)(例如休眠心肌细胞);成肝细胞(例如胆管成肝细胞);上皮细胞;未处理T细胞;巨噬细胞(例如肿瘤浸润性巨噬细胞);或成纤维细胞(例如心肌成纤维细胞)。在实施例中,源细胞为T细胞(例如Treg)、巨噬细胞或心肌细胞。

在一些实施例中,融合体能够将核酸递送(例如递送了)至靶细胞,例如以稳定地修饰靶细胞的基因组,例如用于基因疗法。类似地,在一些实施例中,本文的方法包含将核酸递送至靶细胞。在一些实施例中,靶细胞具有酶缺乏,例如在酶中包含导致酶活性降低(例如无活性)的突变。

在一些实施例中,融合体能够递送(例如递送了)在靶细胞中介导对DNA(例如Cas9、ZFN或TALEN)的序列特异性修饰的试剂。类似地,在一些实施例中,本文的方法包含将试剂递送至靶细胞。在实施例中,靶细胞是肌细胞(例如骨骼肌细胞)、肾细胞或肝细胞。

在一些实施例中,融合体能够将核酸递送(例如递送了)至靶细胞,例如以暂时修饰靶细胞中的基因表达。

在一些实施例中,融合体能够将蛋白质递送(例如递送了)至靶细胞,例如以短暂拯救蛋白质缺乏。类似地,在一些实施例中,本文的方法包含将蛋白质递送至靶细胞。在实施例中,蛋白质为膜蛋白(例如膜转运蛋白)、胞质蛋白(例如酶)或分泌蛋白(例如免疫抑制蛋白)。

在一些实施例中,融合体能够将细胞器递送(例如递送了)至靶细胞,例如其中靶细胞具有缺陷的细胞器网络。类似地,在一些实施例中,本文的方法包含将细胞器递送至靶细胞。在实施例中,源细胞为肝细胞、骨骼肌细胞或神经元。

在一些实施例中,融合体能够将核递送(例如递送了)至靶细胞,例如其中靶细胞具有基因突变。类似地,在一些实施例中,本文的方法包含将核递送至靶细胞。在一些实施例中,核是自体的且包含一个或多个相对于靶细胞的基因变化,例如其包含对DNA(例如Cas9、ZFN或TALEN)的序列特异性修饰,或人工染色体、整合至基因组中的额外基因序列、缺失或其任何组合。在实施例中,自体核的来源是干细胞,例如造血干细胞。在实施例中,靶细胞是肌细胞(例如骨骼肌细胞或心肌细胞)、肝细胞或神经元。

在一些实施例中,融合体能够进行细胞内分子递送,例如将蛋白质药剂递送至靶细胞。类似地,在一些实施例中,本文的方法包含将分子递送至靶细胞的胞内区。在实施例中,蛋白质药剂为抑制剂。在实施例中,蛋白质药剂包含纳米抗体、scFv、骆驼抗体、肽、大环或小分子。

在一些实施例中,融合体能够促使(例如促使了)靶细胞分泌蛋白质,例如治疗性蛋白质。类似地,在一些实施例中,本文的方法包含促使靶细胞分泌蛋白质。

在一些实施例中,融合体能够分泌(例如分泌了)药剂,例如蛋白质。在一些实施例中,药剂(例如分泌药剂)被递送到个体的靶位点。在一些实施例中,药剂是不能以重组方式制备或难以以重组方式制备的蛋白质。在一些实施例中,分泌蛋白质的融合体来自选自MSC或软骨细胞的源细胞。

在一些实施例中,融合体在其膜上包含一个或多个细胞表面配体(例如1、2、3、4、5、10、20、50或更多个细胞表面配体)。类似地,在一些实施例中,本文的方法包含将一个或多个细胞表面配体呈递至靶细胞。在一些实施例中,具有细胞表面配体的融合体来自选自嗜中性粒细胞(例如,且靶细胞为肿瘤浸润性淋巴细胞)、树突状细胞(例如,且靶细胞为未处理T细胞)或嗜中性粒细胞(例如,且靶细胞为肿瘤细胞或病毒感染的细胞)的源细胞。在一些实施例中,融合体包含膜复合物,例如包含至少2、3、4或5个蛋白质的复合物,例如同二聚体、异二聚体、同三聚体、异三聚体、同四聚体或异四聚体。在一些实施例中,融合体包含抗体,例如毒性抗体,例如融合体能够将抗体递送至靶位点,例如通过归巢至靶位点。在一些实施例中,源细胞为NK细胞或嗜中性粒细胞。

在一些实施例中,本文的方法包含引起蛋白质从靶细胞分泌或配体呈递于靶细胞表面上。在一些实施例中,融合体能够引起靶细胞的细胞死亡。在一些实施例中,融合体来自NK源细胞。

在一些实施例中,融合体或靶细胞能够进行吞噬作用(例如吞噬病原体)。类似地,在一些实施例中,本文的方法包含引起吞噬作用。

在一些实施例中,融合体感测其局部环境且对其作出反应。在一些实施例中,融合体能够感测代谢物、白介素或抗原的水平。

在实施例中,融合体能够进行趋化作用、外渗或一种或多种代谢活性。在实施例中,代谢活性选自犬尿氨酸(kyneurinine)、葡糖新生、***素脂肪酸氧化、腺苷代谢、尿素循环和产热呼吸。在一些实施例中,源细胞为嗜中性粒细胞且融合体能够归巢至损伤位点。在一些实施例中,源细胞为巨噬细胞且融合体能够进行吞噬作用。在一些实施例中,源细胞为棕色脂肪组织细胞且融合体能够进行脂解。

在一些实施例中,融合体包含多种药剂(例如至少2、3、4、5、10、20或50种药剂)(例如能够将其递送至靶细胞)。在实施例中,融合体包含抑制性核酸(例如siRNA或miRNA)和mRNA。

在一些实施例中,融合体包含膜蛋白或编码膜蛋白的核酸(例如能够将其递送至靶细胞)。在实施例中,融合体能够重编程或转分化靶细胞,例如融合体包含一种或多种诱导靶细胞重编程或转分化的药剂。

在一些实施例中,个体需要再生。在一些实施例中,个体罹患癌症、自身免疫疾病、传染病、代谢疾病、神经退化性疾病或遗传病(例如酶缺乏症)。

在一些实施例(例如用于分析货物的非内吞递送的实施例)中,使用以下步骤中的一个或多个(例如全部)来分析货物递送:(a)将30,000个HEK-293T靶细胞置于包含100nM巴弗洛霉素(bafilomycin)A1的96孔板的第一孔中,且将类似数目的类似细胞置于缺少巴弗洛霉素A1的96孔板的第二孔中,(b)在DMEM培养基中在37℃和5%CO2下培养靶细胞四小时,(c)使靶细胞与10μg包含货物的融合体接触,(d)在37℃和5%CO2下培育靶细胞和融合体24小时,和(e)确定第一孔和第二孔中包含货物的细胞的百分比。步骤(e)可包含使用显微法,例如使用免疫荧光来检测货物。步骤(e)可包含间接检测货物,例如检测货物的下游效应,例如报告蛋白的存在。在一些实施例中,如实例135中所述地进行以上步骤(a)-(e)中的一个或多个。

在一些实施例中,内吞作用抑制剂(例如氯奎或巴弗洛霉素A1)抑制内体酸化。在一些实施例中,货物递送独立于溶酶体酸化。在一些实施例中,内吞作用抑制剂(例如Dynasore)抑制发动蛋白。在一些实施例中,货物递送独立于发动蛋白活性。

在一些实施例(例如用于相对于非靶细胞,向靶细胞特异性递送货物的实施例)中,使用以下步骤中的一个或多个(例如全部)来分析货物递送:(a)将30,000个过表达CD8a和CD8b的HEK-293T靶细胞置于96孔板的第一孔中,且将不过表达CD8a和CD8b的30,000个HEK-293T非靶细胞置于96孔板的第二孔中,(b)在DMEM培养基中在37℃和5%CO2下培养靶细胞四小时,(c)使靶细胞与10μg包含货物的融合体接触,(d)在37℃和5%CO2下培育靶细胞和融合体24小时,和(e)确定第一孔和第二孔中包含货物的细胞的百分比。步骤(e)可包含使用显微法,例如使用免疫荧光来检测货物。步骤(e)可包含间接检测货物,例如检测货物的下游效应,例如报告蛋白的存在。在一些实施例中,如实例124中所述地进行以上步骤(a)-(e)中的一个或多个。

在一些实施例中:

ii)源细胞不是293细胞、HEK细胞、人类内皮细胞或人类上皮细胞;

iii)融合剂不是病毒蛋白;

iv)融合体或包含多个融合体的组合物或制剂的密度不在1.08g/ml与1.12g/ml之间,例如

v)融合体的密度为1.25g/ml+/-0.05,例如根据实例33的分析所测量;

vi)融合体未被循环中的清除系统或肝窦中的库普弗细胞捕获;

vii)融合体未被个体的网状内皮系统(RES)捕获,例如根据实例76的分析;

viii)当向个体施用多个融合体时,所述多个融合体中的小于1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%在24、48或72小时之后被RES捕获,例如根据实例76的分析;

ix)融合体的直径大于5μm、6μm、7μm、8μm、10μm、20μm、50μm、100μm、150μm或200μm。

在一些实施例中,融合体包含细胞生物物质或由其组成。在一些实施例中,融合体包含去核细胞。在一些实施例中,融合体包含灭活的核。在一些实施例中,融合体不包含机能核。

在一些实施例中,融合体或融合体组合物具有或被鉴别为具有一种或多种(例如至少2、3、4或5种)本文的特性,例如以下特性。

在一些实施例中,融合体与靶细胞的融合率高于非靶细胞,例如高至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍、5倍、10倍、20倍、50倍或100倍,例如在实例54的分析中。在一些实施例中,融合体与靶细胞的融合率高于其它融合体,例如高至少10%、20%、30%、40%、50%、60%、70%、80%或90%,例如在实例54的分析中。在一些实施例中,融合体与靶细胞的融合率使得在24、48或72小时之后,融合体中的药剂递送到至少10%、20%、30%、40%、50%、60%、70%、80%或90%的靶细胞,例如在实例54的分析中。在实施例中,靶向融合的量为约30%-70%、35%-65%、40%-60%、45%-55%或45%-50%,例如约48.8%,例如在实例54的分析中。在实施例中,靶向融合的量为约20%-40%、25%-35%或30%-35%,例如约32.2%,例如在实例55的分析中。

在一些实施例中,融合剂以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数存在,例如根据实例29的分析所测量。在一些实施例中,至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、96%、97%、98%或99%融合体包含的融合剂被安置于细胞膜中。在实施例中,融合体还在内部,例如在细胞质或细胞器中包含融合剂。在一些实施例中,融合剂占(或被鉴别为占)融合体中的总蛋白的约0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、5%、10%、11%、12%、13%、14%、15%、20%或更大,或约1-30%、5-20%、10-15%、12-15%、13-14%或13.6%,例如根据实例162中描述的方法和/或根据质谱分析所测定。在实施例中,融合剂占(或被鉴别为占)融合体中的总蛋白的约13.6%。在一些实施例中,融合剂比一种或多种额外的所关注蛋白质更丰富或更不丰富(或被鉴别为如此),例如根据实例162中描述的方法所测定。在一个实施例中,融合剂具有(或被鉴别为具有)约140、145、150、151、152、153、154、155、156、157(例如156.9)、158、159、160、165或170的与EGFP的比。在另一实施例中,融合剂具有(或被鉴别为具有)约2700、2800、2900、2910(例如2912)、2920、2930、2940、2950、2960、2970、2980、2990或3000,或约1000-5000、2000-4000、2500-3500、2900-2930、2910-2915或2912.0的与CD63的比,例如根据质谱分析。在一个实施例中,融合剂具有(或被鉴别为具有)约600、610、620、630、640、650、660(例如664.9)、670、680、690或700的与ARRDC1的比。在另一实施例中,融合剂具有(或被鉴别为具有)约50、55、60、65、70(例如69)、75、80或85,或约1-30%、5-20%、10-15%、12-15%、13-14%或13.6%的与GAPDH的比。在另一实施例中,融合剂具有(或被鉴别为具有)约500、510、520、530、540、550、560(例如558.4)、570、580、590或600,或约300-800、400-700、500-600、520-590、530-580、540-570、550-560或558.4的与CNX的比,例如根据质谱分析。

在一些实施例中,融合体以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含治疗剂,例如根据实例43或156的分析所测量。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含蛋白质治疗剂,例如根据实例43或156的分析所测量。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含核酸治疗剂。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含DNA治疗剂。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含RNA治疗剂。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含外源治疗剂。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含外源蛋白质治疗剂。在一些实施例中,融合体以至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的拷贝数包含外源核酸(例如DNA或RNA)治疗剂。在一些实施例中,融合剂的拷贝数与治疗剂的拷贝数的比为1,000,000:1至100,000:1、100,000:1至10,000:1、10,000:1至1,000:1、1,000:1至100:1、100:1至50:1、50:1至20:1、20:1至10:1、10:1至5:1、5:1至2:1、2:1至1:1、1:1至1:2、1:2至1:5、1:5至1:10、1:10至1:20、1:20至1:50、1:50至1:100、1:100至1:1,000、1:1,000至1:10,000、1:10,000至1:100,000或1:100,000至1:1,000,000。

在一些实施例中,融合体向靶细胞递送至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的治疗剂。在一些实施例中,融合体向靶细胞递送至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的蛋白质治疗剂。在一些实施例中,融合体向靶细胞递送至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的核酸治疗剂。在一些实施例中,融合体向靶细胞递送至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的RNA治疗剂。在一些实施例中,融合体向靶细胞递送至少10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝的DNA治疗剂。

在一些实施例中,融合体向靶细胞递送至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、96%、97%、98%或99%融合体包含的货物(例如治疗剂,例如内源性治疗剂或外源性治疗剂)。在一些实施例中,与靶细胞融合的融合体向靶细胞递送平均至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、96%、97%、98%或99%与靶细胞融合的融合体包含的货物(例如治疗剂,例如内源性治疗剂或外源性治疗剂)。在一些实施例中,融合体组合物向靶细胞递送至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、96%、97%、98%或99%融合体组合物包含的货物(例如治疗剂,例如内源性治疗剂或外源性治疗剂)。

在一些实施例中,融合体包含0.00000001mg融合剂至1mg融合剂/mg融合体中的总蛋白质,例如0.00000001-0.0000001、0.0000001-0.000001、0.000001-0.00001、0.00001-0.0001、0.0001-0.001、0.001-0.01、0.01-0.1、或0.1-1mg融合剂/mg融合体中的总蛋白质。在一些实施例中,融合体包含0.00000001mg融合剂至5mg融合剂/mg融合体中的脂质,例如0.00000001-0.0000001、0.0000001-0.000001、0.000001-0.00001、0.00001-0.0001、0.0001-0.001、0.001-0.01、0.01-0.1、0.1-1或1-5mg融合剂/mg融合体中的脂质。

在一些实施例中,货物为蛋白质货物。在实施例中,货物为内源或合成蛋白货物。在一些实施例中,融合体具有(或被鉴别为具有)每融合体至少1、2、3、4、5、10、20、50、100或更多个蛋白质货物分子。在一个实施例中,融合体具有(或被鉴别为具有)每融合体约100、110、120、130、140、150、160、166、170、180、190或200个蛋白质药剂分子,例如根据实例156中描述的方法所定量。在一些实施例中,内源或合成蛋白货物占(或被鉴别为占)融合体中的总蛋白的约0.1%、0.2%、0.3%、0.4%、0.5%、1%、5%、10%、15%、20%、25%或更大。在一个实施例中,合成蛋白货物占(或被鉴别为占)融合体中的总蛋白的约13.6%。在一些实施例中,合成蛋白货物具有(或被鉴别为具有)约4×10-3、5×10-3、6×10-3(例如6.37×10-3)、7×10-3或8×10-3的与VSV-G的比。在实施例中,合成蛋白货物具有(或被鉴别为具有)约10、15、16、17、18(例如18.6)、19、20、25或30,或约10-30、15-25、16-19、18-19或18.6的与CD63的比。在实施例中,合成蛋白货物具有(或被鉴别为具有)约2、3、4(例如4.24)、5、6或7的与ARRDC1的比。在实施例中,合成蛋白货物具有(或被鉴别为具有)约0.1、0.2、0.3、0.4(例如0.44)、0.5、0.6或0.7的与GAPDH的比。在实施例中,合成蛋白货物具有(或被鉴别为具有)约1、2、3(例如3.56)、4、5或6的与CNX的比。在实施例中,合成蛋白货物具有(或被鉴别为具有)约10、15、16、17、18、19(例如19.52)、20、21、22、23、24、25或30的与TSG101的比。

在一些实施例中,融合剂占(或被鉴别为占)融合体中的总蛋白的至少0.5%、1%、5%、10%或更大,例如根据质谱分析。在一个实施例中,融合剂占(或被鉴别为占)融合体中的总蛋白的约1-30%、5-20%、10-15%、12-15%、13-14%或13.6%,例如根据质谱分析。在一些实施例中,融合剂比其它所关注蛋白质更丰富。在实施例中,融合剂具有(或被鉴别为具有)约145-170、150-165、155-160、156.9的与有效负载蛋白质(例如EGFP)的比,例如根据质谱分析。在实施例中,融合剂具有(或被鉴别为具有)约1000-5000、2000-4000、2500-3500、2900-2930、2910-2915或2912.0的与CD63的比,例如根据质谱分析。在实施例中,融合剂具有约300-1000、400-900、500-800、600-700、640-690、650-680、660-670或664.9的与ARRDC1的比,例如根据质谱分析。在实施例中,融合剂具有(或被鉴别为具有)约20-120、40-100、50-90、60-80、65-75、68-70或69.0的与GAPDH的比,例如根据质谱分析。在实施例中,融合剂具有约200-900、300-800、400-700、500-600、520-590、530-580、540-570、550-560或558.4的与CNX的比,例如根据质谱分析。在实施例中,质谱分析为实例162的分析。

在一些实施例中,融合体和源细胞两者中存在(例如在其之间共有)的脂质物质的数目为(或被鉴别为)至少300、400、500、550、560或569,或500-700、550-600或560-580,例如使用质谱分析。在实施例中,以源细胞中的对应脂质水平的至少25%的水平(均被标准化为样品内的总脂质水平)存在于融合体中的脂质物质的数目为(或被鉴别为)至少300、400、500、530、540或548,或400-700、500-600、520-570、530-560或540-550,例如使用质谱分析。在一些实施例中,融合体和源细胞两者中存在(例如在其之间共有)的脂质物质相对于源细胞中的总脂质物质的分率为(或被鉴别为)约0.4-1.0、0.5-0.9、0.6-0.8或0.7,或至少0.4、0.5、0.6或0.7,例如使用质谱分析。在一些实施例中,质谱分析是实例154的分析。

在一些实施例中,融合体和源细胞两者中存在(例如在其之间共有)的蛋白质物质的数目为(或被鉴别为)至少500、1000、1100、1200、1300、1400、1487、1500或1600,或为(或被鉴别为)1200-1700、1300-1600、1400-1500、1450-1500或1480-1490,例如使用质谱分析。在实施例中,以源细胞中的对应蛋白质水平的至少25%的水平(均被标准化为样品内的总蛋白质水平)存在于融合体中的蛋白质物质的数目为(或被鉴别为)至少500、600、700、800、900、950、957、1000或1200,例如使用质谱分析。在一些实施例中,融合体和源细胞两者中存在(例如在其之间共有)的蛋白质物质相对于源细胞中的总蛋白质物质的分率为(或被鉴别为)约0.1-0.6、0.2-0.5、0.3-0.4或0.333,或至少约0.1、0.2、0.3、0.333或0.4,例如使用质谱分析。在实施例中,质谱分析是实例155的分析。

在一些实施例中,CD63以(或被鉴别为以)融合体中的总蛋白的量的小于0.048%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%或10%存在,例如根据质谱分析,例如实例157的分析。

在一些实施例中,通过经由过滤器,例如约1-10、2-8、3-7、4-6或5μm的过滤器挤压来产生融合体。在一些实施例中,融合体具有(或被鉴别为具有)约1-5、2-5、3-5、4-5或5μm的平均直径。在一些实施例中,融合体具有(或被鉴别为具有)至少1、2、3、4或5μm的平均直径。

在一些实施例中,相比于源细胞,融合体富集(或被鉴别为富集)以下脂质中的一种或多种(例如至少2、3、4、5种或全部):胆固醇酯、游离胆固醇、醚连接的溶血磷脂酰乙醇胺、溶血磷脂酰丝氨酸、磷脂酸酯、醚连接的磷脂酰乙醇胺、磷脂酰丝氨酸和鞘磷脂。在一些实施例中,相比于源细胞,融合体耗尽(或被鉴别为耗尽)以下脂质中的一种或多种(例如至少2、3、4、5种或全部):神经酰胺、心磷脂、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、溶血磷脂酰甘油、溶血磷脂酰肌醇、醚连接的磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰甘油、磷脂酰肌醇和三酰甘油。在一些实施例中,融合体富集(或被鉴别为富集)前述富集的脂质中的一种或多种且耗尽前述耗尽的脂质中的一种或多种。在一些实施例中,相比于源细胞中的对应水平,融合体包含(或被鉴别为包含)大至少10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、5倍或10倍的总脂质的百分比形式的富集的脂质。在一些实施例中,融合体以源细胞中的对应水平的小于90%、80%、70%、60%、50%、40%、30%、20%或10%的水平包含(或被鉴别为包含)总脂质的百分比形式的耗尽的脂质。在实施例中,脂质富集通过质谱分析,例如实例164的分析来测量。

在一些实施例中,融合体中的CE脂质水平比(或被鉴别为比)外泌体中高约2倍和/或融合体中的CE脂质水平比亲本细胞中高约5、6、7、8、9或10倍(相对于样品中的总脂质)。在一些实施例中,亲本细胞中的神经酰胺脂质水平比(或被鉴别为比)融合体中高约2、3、4或5倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的胆固醇水平比(或被鉴别为比)融合体中高约1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9或2倍和/或融合体中的胆固醇水平比亲本细胞中高约2倍(相对于样品中的总脂质)。在一些实施例中,亲本细胞中的CL脂质水平比(或被鉴别为比)融合体中高至少约5、10、20、30或40倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的DAG脂质水平比(或被鉴别为比)融合体中高约2或3倍和/或亲本细胞中的DAG脂质水平比融合体中高约1.5或2倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PC脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PC脂质水平比融合体中高约1.3、1.4、1.5、1.6、1.7或1.8倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PC O-脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PC O-脂质水平比融合体中高约2倍(相对于样品中的总脂质)。在一些实施例中,融合体中的PE脂质水平比(或被鉴别为比)外泌体中高约1.3、1.4、1.5、1.6、1.7或1.8倍和/或亲本细胞中的PE脂质水平比融合体中高约1.3、1.4、1.5、1.6、1.7或1.8倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PE O-脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PE O-脂质水平比融合体中高约1.5、1.6、1.7、1.8、1.9或2倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PG脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PG脂质水平比融合体中高约2、3、4、5、6、7、8、9或10倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PI脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PI脂质水平比融合体中高约3、4、5、6或7倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的PS脂质水平为(或被鉴别为)(或被鉴别为)大约相等和/或融合体中的PS脂质水平比亲本细胞中高约2倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的SM脂质水平为(或被鉴别为)大约相等和/或融合体中的SM脂质水平比亲本细胞中高约2、2.5或3倍(相对于样品中的总脂质)。在一些实施例中,外泌体与融合体之间的TAG脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的TAG脂质水平比融合体中高约10、20、30、40、50、60、70、80、90、100倍或更大(相对于样品中的总脂质)。

在一些实施例中,相比于外泌体,融合体富集(或被鉴别为富集)以下脂质中的一种或多种(例如至少2、3、4、5种或全部):胆固醇酯、神经酰胺、二酰甘油、溶血磷脂酸酯和磷脂酰乙醇胺,和三酰甘油。在一些实施例中,相比于外泌体,融合体耗尽(或被鉴别为耗尽)以下脂质中的一种或多种(例如至少2、3、4、5种或全部):游离胆固醇、己糖基神经酰胺、溶血磷脂酰胆碱、醚连接的溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、醚连接的溶血磷脂酰乙醇胺和溶血磷脂酰丝氨酸。在一些实施例中,融合体富集(或被鉴别为富集)前述富集的脂质中的一种或多种且耗尽前述耗尽的脂质中的一种或多种。在一些实施例中,相比于外泌体中的对应水平,融合体包含(或被鉴别为包含)大至少10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、5倍或10倍的总脂质的百分比形式的富集的脂质。在一些实施例中,融合体以外泌体中的对应水平的小于90%、80%、70%、60%、50%、40%、30%、20%或10%的水平包含(或被鉴别为包含)总脂质的百分比形式的耗尽的脂质。在实施例中,脂质富集通过质谱分析,例如实例164的分析来测量。

在一些实施例中,融合体中的神经酰胺脂质水平比(或被鉴别为比)外泌体中高约2倍和/或亲本细胞中的神经酰胺脂质水平比融合体中高约2倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的HexCer脂质水平比(或被鉴别为比)融合体中高约1.5、1.6、1.7、1.8、1.9或2倍和/或亲本细胞与融合体中的HexCer脂质水平大约相等(相对于样品中的总脂质)。在一些实施例中,融合体中的LPA脂质水平比(或被鉴别为比)外泌体中高约3或4倍和/或融合体中的LPA脂质水平比亲本细胞中高约1.3、1.4、1.5、1.6、1.7或1.8倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的LPC脂质水平比(或被鉴别为比)融合体中高约2倍和/或亲本细胞中的LPC脂质水平比融合体中高约1.5、1.6、1.7、1.8、1.9或2倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的LPC O-脂质水平比(或被鉴别为比)融合体中高约3或4倍和/或亲本细胞与融合体之间的LPC O-脂质水平大约相等(相对于样品中的总脂质)。在一些实施例中,外泌体中的LPE脂质水平比(或被鉴别为比)融合体中高约1.5、1.6、1.7、1.8、1.9或2倍和/或亲本细胞中的LPE脂质水平比融合体中高约1.5、1.6、1.7、1.8、1.9或2倍(相对于样品中的总脂质)。在一些实施例中,外泌体中的LPE O-脂质水平比(或被鉴别为比)融合体中高约2或3倍和/或亲本细胞与融合体之间的LPE O-脂质水平大约相等(相对于样品中的总脂质)。在一些实施例中,外泌体中的LPS脂质水平比(或被鉴别为比)融合体中高约3倍(相对于样品中的总脂质)。在一些实施例中,融合体中的PA脂质水平比(或被鉴别为比)外泌体中高约1.5、1.6、1.7、1.8、1.9或2倍和/或融合体中的PA脂质水平比亲本细胞中高约2倍(相对于样品中的总脂质)。在一些实施例中,融合体与外泌体之间的PG脂质水平为(或被鉴别为)大约相等和/或亲本细胞中的PG脂质水平比融合体中高约10、11、12、13、14或15倍(相对于样品中的总脂质)。

在一些实施例中,融合体包含与源细胞基本上类似的脂质组成,或其中CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG中的一个或多个在源细胞中的对应脂质水平的10%、15%、20%、25%、30%、35%、40%、45%或50%内。在实施例中,融合体的脂质组成与衍生其的细胞类似。在实施例中,如果亲本细胞的任何复制样品中鉴别的大于或等于约50%、55%、60%、65%、70%、75%、80%、85%或90%的脂质物质存在(或被鉴别为存在)于融合体的任何复制样品中,则融合体和亲本细胞具有(或被鉴别为具有)类似脂质组成,例如根据实例154所测定。在实施例中,在鉴别的脂质中,融合体中的平均水平大于亲本细胞中的对应平均脂质物质水平的约10%、15%、20%、25%、30%、35%或40%(相对于样品中的总脂质)。在一个实施例中,相对于亲本细胞(相对于样品中的总脂质),融合体的脂质组成富集和/或耗尽特定脂质。

在一些实施例中,相对于亲本细胞,融合体的脂质组成(或被鉴别为)富集和/或耗尽特定脂质,例如根据实例164中描述的方法所测定。

在一些实施例中,融合体具有(或被鉴别为具有)比亲本细胞更大的磷脂酰丝氨酸与总脂质的比。在实施例中,相对于亲本细胞,融合体具有(或被鉴别为具有)约110%、115%、120%、121%、122%、123%、124%、125%、130%、135%、140%或更大的磷脂酰丝氨酸与总脂质的比。在一些实施例中,相对于亲本细胞,融合体(或被鉴别为)富集胆固醇酯、游离胆固醇、醚连接的溶血磷脂酰乙醇胺、溶血磷脂酰丝氨酸、磷脂酸酯、醚连接的磷脂酰乙醇胺、磷脂酰丝氨酸和/或鞘磷脂。在一些实施例中,相对于亲本细胞,融合体(或被鉴别为)耗尽神经酰胺、心磷脂、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、溶血磷脂酰甘油、溶血磷脂酰肌醇、醚连接的磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰甘油、磷脂酰肌醇和/或三酰甘油。在一些实施例中,相对于外泌体,融合体(或被鉴别为)富集胆固醇酯、神经酰胺、二酰甘油、溶血磷脂酸酯、磷脂酰乙醇胺和/或三酰甘油。在一些实施例中,相对于外泌体,融合体(或被鉴别为)耗尽游离胆固醇、己糖基神经酰胺、溶血磷脂酰胆碱、醚连接的溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、醚连接的溶血磷脂酰乙醇胺和/或溶血磷脂酰丝氨酸。

在一些实施例中,融合体的心磷脂:神经酰胺的比在源细胞中的心磷脂:神经酰胺的比的10%、20%、30%、40%或50%内;或心磷脂:二酰甘油的比在源细胞中的心磷脂:二酰甘油的比的10%、20%、30%、40%或50%内;或心磷脂:己糖基神经酰胺的比在源细胞中的心磷脂:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酸酯的比在源细胞中的心磷脂:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酰胆碱的比在源细胞中的心磷脂:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酰乙醇胺的比在源细胞中的心磷脂:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酰甘油的比在源细胞中的心磷脂:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酰肌醇的比在源细胞中的心磷脂:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或心磷脂:溶血磷脂酰丝氨酸的比在源细胞中的心磷脂:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酸酯的比在源细胞中的心磷脂:磷脂酸酯的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰胆碱的比在源细胞中的心磷脂:磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰乙醇胺的比在源细胞中的心磷脂:磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰甘油的比在源细胞中的心磷脂:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰肌醇的比在源细胞中的心磷脂:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰丝氨酸的比在源细胞中的心磷脂:磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或心磷脂:胆固醇酯的比在源细胞中的心磷脂:胆固醇酯的比的10%、20%、30%、40%或50%内;或心磷脂:鞘磷脂的比在源细胞中的心磷脂:鞘磷脂的比的10%、20%、30%、40%或50%内;或心磷脂:三酰甘油的比在源细胞中的心磷脂:三酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:神经酰胺的比在源细胞中的磷脂酰胆碱:神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:二酰甘油的比在源细胞中的磷脂酰胆碱:二酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:己糖基神经酰胺的比在源细胞中的磷脂酰胆碱:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酸酯的比在源细胞中的磷脂酰胆碱:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酰胆碱的比在源细胞中的磷脂酰胆碱:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酰乙醇胺的比在源细胞中的磷脂酰胆碱:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酰甘油的比在源细胞中的磷脂酰胆碱:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酰肌醇的比在源细胞中的磷脂酰胆碱:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:溶血磷脂酰丝氨酸的比在源细胞中的磷脂酰胆碱:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:磷脂酸酯的比在源细胞中的心磷脂:磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:磷脂酰乙醇胺的比在源细胞中的磷脂酰胆碱:磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或心磷脂:磷脂酰甘油的比在源细胞中的磷脂酰胆碱:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:磷脂酰肌醇的比在源细胞中的磷脂酰胆碱:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:磷脂酰丝氨酸的比在源细胞中的磷脂酰胆碱:磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:胆固醇酯的比在源细胞中的磷脂酰胆碱:胆固醇酯的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:鞘磷脂的比在源细胞中的磷脂酰胆碱:鞘磷脂的比的10%、20%、30%、40%或50%内;或磷脂酰胆碱:三酰甘油的比在源细胞中的磷脂酰胆碱:三酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:神经酰胺的比在源细胞中的磷脂酰乙醇胺:神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:二酰甘油的比在源细胞中的磷脂酰乙醇胺:二酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:己糖基神经酰胺的比在源细胞中的磷脂酰乙醇胺:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酸酯的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酰胆碱的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酰乙醇胺的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酰甘油的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酰肌醇的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:溶血磷脂酰丝氨酸的比在源细胞中的磷脂酰乙醇胺:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:磷脂酸酯的比在源细胞中的磷脂酰乙醇胺:磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:磷脂酰甘油的比在源细胞中的磷脂酰乙醇胺:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:磷脂酰肌醇的比在源细胞中的磷脂酰乙醇胺:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:磷脂酰丝氨酸的比在源细胞中的磷脂酰乙醇胺:磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:胆固醇酯的比在源细胞中的磷脂酰乙醇胺:胆固醇酯的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:鞘磷脂的比在源细胞中的磷脂酰乙醇胺:鞘磷脂的比的10%、20%、30%、40%或50%内;或磷脂酰乙醇胺:三酰甘油的比在源细胞中的磷脂酰乙醇胺:三酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:神经酰胺的比在源细胞中的磷脂酰丝氨酸:神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:二酰甘油的比在源细胞中的磷脂酰丝氨酸:二酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:己糖基神经酰胺的比在源细胞中的磷脂酰丝氨酸:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酸酯的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酰胆碱的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酰乙醇胺的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酰甘油的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酰肌醇的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:溶血磷脂酰丝氨酸的比在源细胞中的磷脂酰丝氨酸:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:磷脂酸酯的比在源细胞中的磷脂酰丝氨酸:磷脂酸酯的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:磷脂酰甘油的比在源细胞中的磷脂酰丝氨酸:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:磷脂酰肌醇的比在源细胞中的磷脂酰丝氨酸:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:胆固醇酯的比在源细胞中的磷脂酰丝氨酸:胆固醇酯的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:鞘磷脂的比在源细胞中的磷脂酰丝氨酸:鞘磷脂的比的10%、20%、30%、40%或50%内;或磷脂酰丝氨酸:三酰甘油的比在源细胞中的磷脂酰丝氨酸:三酰甘油的比的10%、20%、30%、40%或50%内;或鞘磷脂:神经酰胺的比在源细胞中的鞘磷脂:神经酰胺的比的10%、20%、30%、40%或50%内;或鞘磷脂:二酰甘油的比在源细胞中的鞘磷脂:二酰甘油的比的10%、20%、30%、40%或50%内;或鞘磷脂:己糖基神经酰胺的比在源细胞中的鞘磷脂:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酸酯的比在源细胞中的鞘磷脂:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酰胆碱的比在源细胞中的鞘磷脂:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酰乙醇胺的比在源细胞中的鞘磷脂:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酰甘油的比在源细胞中的鞘磷脂:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酰肌醇的比在源细胞中的鞘磷脂:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或鞘磷脂:溶血磷脂酰丝氨酸的比在源细胞中的鞘磷脂:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或鞘磷脂:磷脂酸酯的比在源细胞中的鞘磷脂:磷脂酸酯的比的10%、20%、30%、40%或50%内;或鞘磷脂:磷脂酰甘油的比在源细胞中的鞘磷脂:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或鞘磷脂:磷脂酰肌醇的比在源细胞中的鞘磷脂:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或鞘磷脂:胆固醇酯的比在源细胞中的鞘磷脂:胆固醇酯的比的10%、20%、30%、40%或50%内;或鞘磷脂:三酰甘油的比在源细胞中的鞘磷脂:三酰甘油的比的10%、20%、30%、40%或50%内;或胆固醇酯:神经酰胺的比在源细胞中的胆固醇酯:神经酰胺的比的10%、20%、30%、40%或50%内;或胆固醇酯:二酰甘油的比在源细胞中的胆固醇酯:二酰甘油的比的10%、20%、30%、40%或50%内;或胆固醇酯:己糖基神经酰胺的比在源细胞中的胆固醇酯:己糖基神经酰胺的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酸酯的比在源细胞中的胆固醇酯:溶血磷脂酸酯的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酰胆碱的比在源细胞中的胆固醇酯:溶血磷脂酰胆碱的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酰乙醇胺的比在源细胞中的胆固醇酯:溶血磷脂酰乙醇胺的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酰甘油的比在源细胞中的胆固醇酯:溶血磷脂酰甘油的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酰肌醇的比在源细胞中的胆固醇酯:溶血磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或胆固醇酯:溶血磷脂酰丝氨酸的比在源细胞中的胆固醇酯:溶血磷脂酰丝氨酸的比的10%、20%、30%、40%或50%内;或胆固醇酯:磷脂酸酯的比在源细胞中的胆固醇酯:磷脂酸酯的比的10%、20%、30%、40%或50%内;或胆固醇酯:磷脂酰甘油的比在源细胞中的胆固醇酯:磷脂酰甘油的比的10%、20%、30%、40%或50%内;或胆固醇酯:磷脂酰肌醇的比在源细胞中的胆固醇酯:磷脂酰肌醇的比的10%、20%、30%、40%或50%内;或胆固醇酯:三酰甘油的比在源细胞中的胆固醇酯:三酰甘油的比的10%、20%、30%、40%或50%内。

在一些实施例中,融合体包含与源细胞类似的蛋白质组学组成,例如使用实例42或155的分析。在一些实施例中,融合体的蛋白质组成与衍生其的亲本细胞类似。在一些实施例中,将多个类别的蛋白质中的每一类别的分数含量确定为来自每一类别的强度信号的总和除以样品中所有鉴别的蛋白质的强度信号的总和,例如如实例155中所述。在一些实施例中,相对于亲本细胞和/或外泌体,融合体包含(或被鉴别为包含)不同量的区室特异性蛋白质,例如根据实例165中描述的方法所确定。在一些实施例中,相比于亲本细胞和外泌体,融合体(或被鉴别为)耗尽内质网蛋白。在一些实施例中,相比于外泌体,融合体(或被鉴别为)耗尽外泌体蛋白。在一些实施例中,融合体中少于15%、20%或25%的蛋白质为(或被鉴别为)外泌体蛋白。在一些实施例中,相比于亲本细胞,融合体(或被鉴别为)耗尽线粒体蛋白。在一些实施例中,相比于亲本细胞,融合体(或被鉴别为)富集核蛋白。在一些实施例中,相比于亲本细胞和外泌体,融合体(或被鉴别为)富集核糖体蛋白。在一些实施例中,融合体中至少0.025%、0.03%、0.04%、0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、1%、2%、3%、4%、5%、6%、7%8%、9%或10%的蛋白质为核糖体蛋白,或融合体中约0.025-0.2%、0.05-0.15%、0.06-1.4%、0.07%-1.3%、0.08%-1.2%、0.09%-1.1%、1%-20%、3%-15%、5%-12.5%、7.5%-11%、或8.5%-10.5%、或9%-10%的蛋白质为核糖体蛋白。

在一些实施例中,融合体的脂质:蛋白质比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例49的分析所测量。在实施例中,融合体包含(或被鉴别为包含)约等于有核细胞的脂质质量:蛋白质比的脂质质量:蛋白质比。在实施例中,融合体包含(或被鉴别为包含)比亲本细胞更大的脂质:蛋白质比。在实施例中,融合体包含(或被鉴别为包含)亲本细胞的脂质:蛋白质比的约110%、115%、120%、125%、130%、131%、132%、132.5%、133%、134%、135%、140%、145%或150%的脂质:蛋白质比。在一些实施例中,融合体或融合体组合物具有(或被鉴别为具有)约100-180、110-170、120-160、130-150、135-145、140-142或141μmol/g的磷脂:蛋白质比,例如在实例150的分析中。在一些实施例中,融合体或融合体组合物具有(或被鉴别为具有)源细胞中的对应比的约60-90%、70-80%或75%的磷脂:蛋白质比,例如在实例150的分析中。

在一些实施例中,融合体的蛋白质:核酸(例如DNA或RNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例50的分析所测量。在实施例中,融合体包含(或被鉴别为包含)与亲本细胞类似的蛋白质质量:DNA质量比。在实施例中,融合体包含(或被鉴别为包含)亲本细胞的约85%、90%、95%、96%、97%、98%、98.2%、99%、100%、101%、102%、103%、104%、105%或110%的蛋白质:DNA比。在一些实施例中,融合体的蛋白质:DNA比大于源细胞中的对应比,例如大至少10%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例50的分析所测量。在一些实施例中,融合体或融合体组合物包含(或被鉴别为包含)约20-35、25-30、26-29、27-28或27.8g/g的蛋白质:DNA比,例如根据实例151的分析。在一些实施例中,融合体或融合体组合物包含(或被鉴别为包含)在源细胞中的对应比的约1%、2%、5%、10%或20%内的蛋白质:DNA比,例如根据实例151的分析。

在一些实施例中,融合体的脂质:核酸(例如DNA)比在源细胞中的对应比的10%、20%、30%、40%或50%内,例如使用实例51或159的分析所测量。在一些实施例中,融合体或融合体组合物包含(或被鉴别为包含)约2.0-6.0、3.0-5.0、3.5-4.5、3.8-4.0或3.92μmol/mg的脂质:DNA比,例如根据实例152的分析。在一些实施例中,融合体的脂质:核酸(例如DNA)比大于源细胞中的对应比,例如大至少10%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例51或159的分析所测量。在实施例中,融合体包含(或被鉴别为包含)比亲本细胞更大的脂质:DNA比。在实施例中,相比于亲本细胞,融合体包含约105%、110%、115%、120%、125%、130%、135%、140%、145%、150%或更大的脂质:DNA比。

在一些实施例中,融合体组合物于个体(例如小鼠)中的半衰期在参考细胞组合物(例如源细胞)的半衰期的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例75的分析。在一些实施例中,融合体组合物于个体,例如小鼠中的半衰期为至少1小时、2小时、3小时、4小时、5小时、6小时、12小时或24小时,例如在人类个体或小鼠中,例如根据实例75的分析。在实施例中,融合体组合物于个体中的半衰期为至少1、2、4、6、12或24小时,例如在实例134的分析中。在一些实施例中,治疗剂于个体中的半衰期比融合体组合物的半衰期更长,例如长至少10%、20%、50%、2倍、5倍或10倍。例如,融合体可将治疗剂递送至靶细胞,且治疗剂可在融合体不再存在或可检测之后存在。

在一些实施例中,融合体跨膜运输葡萄糖(例如标记的葡萄糖,例如2-NBDG),例如比阴性对照(例如不存在葡萄糖的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,例如使用实例64的分析所测量。在一些实施例中,融合体以比用根皮素处理的另外类似的融合体更高的水平跨膜运输(或被鉴别为运输)葡萄糖(例如标记的葡萄糖,例如2-NBDG),例如在实例126的分析中。在实施例中,相比于用根皮素处理的另外类似的融合体,未用根皮素处理的融合体以高至少1%、2%、3%、5%或10%(和任选地高至多15%)的水平运输(或被鉴别为不运输)葡萄糖,例如在实例126的分析中。在一些实施例中,融合体于内腔中的酯酶活性在参考细胞(例如源细胞或小鼠胚胎成纤维细胞)中的酯酶活性的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如使用实例66的分析。在一些实施例中,融合体包含(或被鉴别为包含)比未染色对照高至少10倍、20倍、50倍、100倍、200倍、500倍、1000倍、2000倍或5000倍的内腔中的酯酶活性,例如根据实例127的分析。在一些实施例中,融合体包含(或被鉴别为包含)比源细胞低约10-100倍的内腔中的酯酶活性,例如根据实例127的分析。在一些实施例中,融合体包含(或被鉴别为包含)约1E5-1E6、6E5-8E5、6.5E5-7E5或6.83E5外泌体当量的乙酰胆碱酯酶活性,例如根据实例128的分析。在一些实施例中,融合体的代谢活性水平(例如柠檬酸合酶活性)在参考细胞(例如源细胞)中的代谢活性水平的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例68中所述。在一些实施例中,融合体的代谢活性水平(例如柠檬酸合酶活性)为参考细胞(例如源细胞)中的代谢活性水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%,例如如实例68中所述。在一些实施例中,融合体包含(或被鉴别为包含)约1E-2-2E-2、1.3E-2-1.8E-2、1.4E-2-1.7E-2、1.5E-2-1.6E-2、或1.57E-2μmol/μg融合体/min的柠檬酸合酶活性,例如根据实例129的分析。在一些实施例中,融合体的呼吸水平(例如耗氧速率),例如基础、非偶联或最大呼吸水平在参考细胞(例如源细胞)中的呼吸水平的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内,例如如实例69中所述。在一些实施例中,融合体的呼吸水平(例如耗氧速率),例如基础、非偶联或最大呼吸水平为参考细胞(例如源细胞)中的呼吸水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%,例如如实例69中所述。在实施例中,融合体包含(或被鉴别为包含)约8-15、9-14、10-13、11-12或11.3pmol/min/20μg融合体的基础呼吸速率,例如根据实例130的分析。在实施例中,融合体包含(或被鉴别为包含)约8-13、9-12、10-11、10-10.2或10.1pmol/min/20μg融合体的非偶联呼吸速率,例如根据实例130的分析。在实施例中,融合体包含(或被鉴别为包含)约15-25、16-24、17-23、18-22、19-21或20pmol/min/20μg融合体的最大呼吸速率,例如根据实例130的分析。在实施例中,融合体具有(或被鉴别为具有)比非偶联呼吸速率更高的基础呼吸速率,例如高约1%、2%、5%或10%,例如至多约15%,例如根据实例130的分析。在实施例中,融合体具有(或被鉴别为具有)比基础呼吸速率更高的最大呼吸速率,例如高约1%、2%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,例如根据实例130的分析。在一些实施例中,融合体包含至多18,000、17,000、16,000、15,000、14,000、13,000、12,000、11,000或10,000MFI的膜联蛋白-V染色水平,例如使用实例70的分析,或其中相比于实例70的分析中的用甲萘醌处理的另外类似的融合体的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的膜联蛋白-V染色水平,或其中相比于实例70的分析中的用甲萘醌处理的巨噬细胞的膜联蛋白-V染色水平,融合体包含低至少5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的膜联蛋白-V染色水平。在实施例中,融合体包含(或被鉴别为包含)比用抗霉素A处理的另外类似的融合体的膜联蛋白V染色水平低至少约1%、2%、5%或10%的膜联蛋白V染色水平,例如在实例131的分析中。在实施例中,融合体包含(或被鉴别为包含)在用抗霉素A处理的另外类似的融合体的膜联蛋白V染色水平的约1%、2%、5%或10%内的膜联蛋白V染色水平,例如在实例131的分析中。

在一些实施例中,相比于源细胞,融合体的miRNA含量水平为至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如根据实例39的分析。在一些实施例中,融合体的miRNA含量水平为源细胞的miRNA含量水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大(例如源细胞的miRNA含量水平的至多100%),例如根据实例39的分析。在一些实施例中,融合体的总RNA含量水平为源细胞的总RNA含量水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大(例如源细胞的总RNA含量水平的至多100%),例如根据实例108的分析所测量。

在一些实施例中,相比于源细胞,融合体的可溶性:不溶性蛋白质比在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大内,例如在源细胞的1%-2%、2%-3%、3%-4%、4%-5%、5%-10%、10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%或80%-90%内,例如根据实例47的分析。在实施例中,融合体具有约0.3-0.8、0.4-0.7或0.5-0.6,例如约0.563的可溶性:不溶性蛋白质比,例如根据实例47的分析。在一些实施例中,融合体群体具有(或被鉴别为具有)约0.3-0.8、0.4-0.7、0.5-0.6或0.563,或大于约0.1、0.2、0.3、0.4或0.5的可溶性:不溶性蛋白质质量比。在一些实施例中,融合体群体具有(或被鉴别为具有)比源细胞更高的可溶性:不溶性蛋白质质量比,例如高至少2倍、3倍、4倍、5倍、10倍或20倍。在实施例中,通过实例123的分析来测定可溶性:不溶性蛋白质质量比。在实施例中,融合体群体中的可溶性:不溶性蛋白质质量比(或被鉴别为)低于亲本细胞。在实施例中,当融合体:亲本细胞比为(或被鉴别为)约3%、4%、5%、6%、7%或8%时,融合体群体的可溶性:不溶性比为(或被鉴别为)约等于亲本细胞的可溶性:不溶性比。

在一些实施例中,融合体的LPS水平为源细胞的LPS含量的小于5%、1%、0.5%、0.01%、0.005%、0.0001%、0.00001%或更小,例如根据质谱所测量,例如在实例48的分析中。在一些实施例中,融合体能够进行信号转导,例如传输细胞外信号,例如回应于胰岛素的AKT磷酸化,或回应于胰岛素的葡萄糖(例如标记的葡萄糖,例如2-NBDG)摄取,例如比阴性对照(例如不存在胰岛素的另外类似的融合体)多至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%,例如使用实例63的分析。在一些实施例中,融合体在向例如小鼠的个体施用时靶向组织,例如肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳或眼睛,例如其中在24、48或72小时之后,施用的融合体群体中至少0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%、10%、15%、20%、25%、30%、35%、40%、50%、60%、70%、80%或90%的融合体存在于靶组织中,例如根据实例87或100的分析。在一些实施例中,相比于由参考细胞(例如源细胞或骨髓基质细胞(BMSC))诱导的近分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的近分泌信号传导水平,例如根据实例71的分析。在一些实施例中,融合体的近分泌信号传导水平为由参考细胞(例如源细胞或骨髓基质细胞(BMSC))诱导的近分泌信号传导水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%(例如至多100%),例如根据实例71的分析。在一些实施例中,相比于由参考细胞(例如源细胞或巨噬细胞)诱导的旁分泌信号传导水平,融合体具有大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%的旁分泌信号传导水平,例如根据实例72的分析。在一些实施例中,融合体的旁分泌信号传导水平为由参考细胞(例如源细胞或骨髓基质细胞(BMSC))诱导的旁分泌信号传导水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%(例如至多100%),例如根据实例72的分析。在一些实施例中,相比于参考细胞(例如源细胞或C2C12细胞)中聚合肌动蛋白的水平,融合体以在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%内的水平聚合肌动蛋白,例如根据实例73的分析。在一些实施例中,融合体以随时间推移(例如在至少3、5或24小时内)恒定的水平聚合肌动蛋白(或被鉴别为聚合肌动蛋白),例如根据实例147的分析。在实施例中,肌动蛋白聚合水平在5小时时段内改变小于1%、2%、5%、10%或20%,例如根据实例147的分析。在一些实施例中,融合体的膜电位在参考细胞(例如源细胞或C2C12细胞)的膜电位的约1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%内,例如根据实例74的分析,或其中融合体具有约-20至-150mV、-20至-50mV、-50至-100mV或-100至-150mV的膜电位,或其中融合体具有小于-1mv、-5mv、-10mv、-20mv、-30mv、-40mv、-50mv、-60mv、-70mv、-80mv、-90mv、-100mv的膜电位。在一些实施例中,融合体具有(或被鉴别为具有)约-25至-35、-27至-32、-28至-31、-29至-30或-29.6毫伏的膜电位,例如在实例132的分析中。在一些实施例中,融合体能够自血管外渗,例如以源细胞的外渗率的至少1%、2%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的速率,例如使用实例57的分析,例如其中源细胞为嗜中性粒细胞、淋巴细胞、B细胞、巨噬细胞或NK细胞。在一些实施例中,融合体能够进行趋化作用,例如为相比于参考细胞(例如巨噬细胞)的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%(例如至多100%),例如使用实例58的分析。在一些实施例中,融合体能够进行吞噬作用,例如相比于参考细胞(例如巨噬细胞)的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%(例如至多100%),例如使用实例60的分析。在一些实施例中,融合体能够穿过细胞膜,例如内皮细胞膜或血脑屏障。在一些实施例中,融合体能够分泌蛋白质,例如以比参考细胞(例如小鼠胚胎成纤维细胞)大至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的速率,例如使用实例62的分析。在一些实施例中,融合体能够分泌蛋白质,例如以相比于参考细胞(例如小鼠胚胎成纤维细胞)的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%(例如至多100%)的速率,例如使用实例62的分析。

在一些实施例中,融合体不能转录或具有参考细胞(例如源细胞)的转录活性的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的转录活性,例如使用实例19的分析。在一些实施例中,融合体不能进行核DNA复制或具有参考细胞(例如源细胞)的核DNA复制的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的核DNA复制,例如使用实例20的分析。在一些实施例中,融合体缺乏染色质或具有参考细胞(例如源细胞)的染色质含量的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的染色质含量,例如使用实例37的分析。

在一些实施例中,通过与参考细胞比较来描述融合体的特征。在实施例中,参考细胞为源细胞。在实施例中,参考细胞为HeLa、HEK293、HFF-1、MRC-5、WI-38、IMR 90、IMR 91、PER.C6、HT-1080或BJ细胞。在一些实施例中,通过与参考细胞群体,例如源细胞群体,或HeLa、HEK293、HFF-1、MRC-5、WI-38、IMR 90、IMR 91、PER.C6、HT-1080或BJ细胞群体比较来描述融合体群体的特征。

在一些实施例中,融合体符合药物或良好生产规范(GMP)标准。在一些实施例中,融合体是根据良好生产规范(GMP)制成的。在一些实施例中,融合体的病原体水平低于预定参考值,例如基本上不含病原体。在一些实施例中,融合体的污染物水平低于预定参考值,例如基本上不含污染物。在一些实施例中,融合体具有低免疫原性,例如如本文所述。

在一些实施例中,通过血清灭活分析(例如检测抗体介导的中和或补体介导的降解的分析)来分析融合体组合物的免疫原性。在一些实施例中,融合体不被血清灭活,或以低于预定值的水平灭活。在一些实施例中,未用融合体治疗的个体(例如人类或小鼠)的血清与测试融合体组合物接触。在一些实施例中,已接受一次或多次融合体施用,例如已接受至少两次融合体施用的个体的血清与测试融合体组合物接触。在实施例中,接着对暴露于血清的融合体测试将货物递送至靶细胞的能力。在一些实施例中,在用血清培育的融合体处理之后可检测地包含货物的细胞的%为在用不与血清接触的阳性对照融合体处理之后可检测地包含货物的细胞的%的至少50%、60%、70%、80%、90%或95%。在一些实施例中,使用实例168的分析来测量血清灭活。

在一些实施例中,通过检测回应于融合体的补体活化来分析融合体组合物的免疫原性。在一些实施例中,融合体不活化补体,或以低于预定值的水平活化补体。在一些实施例中,未用融合体治疗的个体(例如人类或小鼠)的血清与测试融合体组合物接触。在一些实施例中,已接受一次或多次融合体施用,例如已接受至少两次融合体施用的个体的血清与测试融合体组合物接触。在实施例中,接着例如通过ELISA关于活化的补体因子(例如C3a)对包含血清和融合体的组合物进行测试。在一些实施例中,包含本文所述的修饰(例如相比于参考细胞,补体调节蛋白的水平升高)的融合体相比于缺乏修饰的另外类似的融合体经历减少的补体活化,例如减少至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、98%或99%。在一些实施例中,使用实例169的分析来测量补体活化。

在一些实施例中,融合体或融合体群体不会被血清大幅灭活。在一些实施例中,融合体或融合体群体对血清灭活具有抗性,例如根据实例167或168中描述的方法所定量。在实施例中,例如根据本文所述的方法向个体多次施用融合体或融合体群体后,融合体或融合体群体未被血清大幅灭活或对血清灭活具有抗性。在一些实施例中,融合体经修饰以具有降低的血清灭活,例如相比于对应未修饰的融合体,例如在多次施用修饰的融合体后,例如根据实例167或168中描述的方法所定量。

在一些实施例中,融合体不显著诱导补体活性,例如根据实例169中描述的方法所测量。在一些实施例中,融合体经修饰以相比于对应未修饰的融合体诱导降低的补体活性。在实施例中,通过测定补体蛋白(例如DAF,结合衰变加速因子的蛋白(DAF,CD55),例如因子H(FH)样蛋白-1(FHL-1)、C4b结合蛋白(C4BP)、补体受体1(CD35)、膜辅因子蛋白(MCP,CD46)、Profectin(CD59)、抑制经典和旁路补体途径CD/C5转化酶的蛋白或调节MAC装配的蛋白)于细胞中的表达或活性来测量补体活性

在一些实施例中,源细胞为内皮细胞、成纤维细胞、血细胞(例如巨噬细胞、嗜中性粒细胞、粒细胞、白细胞)、干细胞(例如间充质干细胞、脐带干细胞、骨髓干细胞、造血干细胞、诱导多能干细胞,例如衍生自个体的细胞的诱导多能干细胞)、胚胎干细胞(例如来自胚胎卵黄囊、胎盘、脐带、胎儿皮肤、青少年皮肤、血液、骨髓、脂肪组织、造红细胞组织、造血组织的干细胞)、成肌细胞、实质细胞(例如肝细胞)、肺泡细胞、神经元(例如视网膜神经元细胞)、前体细胞(例如视网膜前体细胞、成髓细胞、骨髓前体细胞、胸腺细胞、性母细胞、成巨核细胞、幼巨核细胞、成黑素细胞、成淋巴细胞、骨髓前体细胞、正成红细胞或成血管细胞)、祖细胞(例如心肌祖细胞、卫星细胞、放射状胶质细胞、骨髓基质细胞、胰腺祖细胞、内皮祖细胞、胚细胞)或永生化细胞(例如HeLa、HEK293、HFF-1、MRC-5、WI-38、IMR 90、IMR 91、PER.C6、HT-1080或BJ细胞)。在一些实施例中,源细胞不是293细胞、HEK细胞、人类内皮细胞或人类上皮细胞、单核细胞、巨噬细胞、树突状细胞或干细胞。

在一些实施例中,源细胞表达(例如过表达)ARRDC1或其活性片段或变异体。在一些实施例中,融合体或融合体组合物具有约1-3、1-10、1-100、3-10、4-9、5-8、6-7、15-100、60-200、80-180、100-160、120-140、3-100、4-100、5-100、6-100、15-100、80-100、3-200、4-200、5-200、6-200、15-200、80-200、100-200、120-200、300-1000、400-900、500-800、600-700、640-690、650-680、660-670、100-10,000或约664.9的融合剂:ARRDC1比,例如根据质谱分析。在一些实施例中,呈总蛋白含量的百分比形式的ARRDC1的水平为至少约0.01%、0.02%、0.03%、0.04%、0.05%、0.1%、0.15%、0.2%、0.25%、0.5%、1%、2%、3%、4%、5%;或呈总蛋白含量的百分比形式的ARRDC1的水平为约0.05-1.5%、0.1%-0.3%、0.05-0.2%、0.1-0.2%、0.25-7.5%、0.5%-1.5%、0.25-1%、0.5-1%、0.05-1.5%、10%-30%、5-20%或10-20%,例如根据质谱,例如根据实例166中描述的方法所测量。在一些实施例中,融合体或融合体组合物具有约100-1,000、100-400、100-500、200-400、200-500、200-1,000、300-400、1,000-10,000、2,000-5,000、3,000-4,000、3,050-3,100、3,060-3,070或约3,064、10,000-100,000、10,000-200,000、10,000-500,000、20,000-500,000、30,000-400,000的融合剂:TSG101比,例如使用质谱分析,例如实例162的分析。在一些实施例中,融合体或融合体组合物具有约1-3、1-30、1-20、1-25、1.5-30、10-30、15-25、18-21、19-20、10-300、10-200、15-300、15-200、100-300、100-200、150-300或约19.5的货物:tsg101比,例如使用质谱分析,例如实例163的分析。在一些实施例中,呈总蛋白含量的百分比形式的TSG101的水平为至少约0.0001%、0.0002%、0.0003%、0.0004%、0.0005%、0.0006%、0.0007%、0.001%、0.002%、0.003%、0.004%、0.005%、0.006%、0.007%、0.01%、0.02%、0.03%、0.04%、0.05%、0.06%、0.07%;或呈总蛋白含量的百分比形式的TSG101的水平为约0.0001-0.001、0.0001-0.002、0.0001-0.01、0.0001-0.1、0.001-0.01、0.002-0.006、0.003-0.005、0.001-0.1、0.01-0.1、0.02-0.06、0.03-0.05或0.004,例如根据质谱,例如根据实例166中描述的方法所测量。

在一些实施例中,融合体包含货物,例如治疗剂,例如内源治疗剂或外源治疗剂。在一些实施例中,治疗剂选自以下中的一种或多种:蛋白质,例如酶、跨膜蛋白、受体、抗体;核酸,例如DNA、染色体(例如人类人工染色体)、RNA、mRNA、siRNA、miRNA或小分子。在一些实施例中,治疗剂是除线粒体以外的细胞器,例如选自以下的细胞器:细胞核、高尔基体、溶酶体、内质网、液泡、内体、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、刺丝囊、过氧化物酶体、蛋白酶体、囊泡和应激颗粒。在一些实施例中,细胞器是线粒体。

在一些实施例中,融合体通过内吞作用进入靶细胞,例如其中相比于与类似融合体接触的氯奎处理的参考细胞,经由内吞途径递送的治疗剂的水平为0.01-0.6、0.01-0.1、0.1-0.3或0.3-0.6,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如使用实例91的分析。在一些实施例中,融合体组合物中至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%的进入靶细胞的融合体经由非内吞途径进入,例如融合体经由与细胞表面融合而进入靶细胞。在一些实施例中,对于给定的融合体,经由非内吞途径递送的治疗剂的水平为氯奎处理的参考细胞的0.1-0.95、0.1-0.2、0.2-0.3、0.3-0.4、0.4-0.5、0.5-0.6、0.6-0.7、0.7-0.8、0.8-0.9、0.9-0.95,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如使用实例90的分析。在一些实施例中,融合体组合物中至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%的进入靶细胞的融合体进入细胞质(例如不进入内体或溶酶体)。在一些实施例中,融合体组合物中小于90%、80%、70%、60%、50%、40%、30%、20%、10%、5%、4%、3%、2%或1%的进入靶细胞的融合体进入内体或溶酶体。在一些实施例中,融合体通过非内吞途径进入靶细胞,例如其中递送的治疗剂的水平为氯奎处理的参考细胞的至少90%、95%、98%或99%,例如使用实例91的分析。在一个实施例中,融合体经由发动蛋白介导的途径将药剂递送至靶细胞。在一个实施例中,相比于与类似融合体接触的Dynasore处理的靶细胞,经由发动蛋白介导的途径递送的药剂的水平在0.01-0.6,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大的范围内,例如如在实例92的分析中所测量。在一个实施例中,融合体经由巨胞饮将药剂递送至靶细胞。在一个实施例中,相比于与类似融合体接触的EIPA处理的靶细胞,经由巨胞饮递送的药剂的水平在0.01-0.6,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大的范围内,例如如在实例92的分析中所测量。在一个实施例中,融合体经由肌动蛋白介导的途径将药剂递送至靶细胞。在一个实施例中,相比于与类似融合体接触的Latrunculin B处理的靶细胞,经由肌动蛋白介导的途径递送的药剂的水平将在0.01-0.6,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大的范围内,例如如在实例92的分析中所测量。

在一些实施例中,融合体具有<1、1-1.1、1.05-1.15、1.1-1.2、1.15-1.25、1.2-1.3、1.25-1.35或>1.35g/ml的密度,例如根据实例33的分析。

在一些实施例中,按蛋白质质量计,融合体组合物包含小于0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%或10%源细胞,或小于0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%或10%的细胞具有机能核。在一些实施例中,融合体组合物中至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的融合体包含细胞器,例如线粒体。

在一些实施例中,融合体进一步包含外源治疗剂。在一些实施例中,外源治疗剂选自以下中的一种或多种:蛋白质,例如酶、跨膜蛋白、受体、抗体;核酸,例如DNA、染色体(例如人类人工染色体)、RNA、mRNA、siRNA、miRNA或小分子。

在实施例中,融合体通过内吞作用或非内吞途径进入细胞。

在一些实施例中,融合体或融合体组合物被冷藏或冷冻。在实施例中,融合体不包含机能核,融合体组合物包含不具有机能核的融合体。在实施例中,按蛋白质质量计,融合体组合物包含小于0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%或10%源细胞,或小于0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%或10%的细胞具有机能核。在实施例中,融合体组合物已在所述温度下维持至少1、2、3、6或12小时;1、2、3、4、5或6天;1、2、3或4周;1、2、3或6个月;或1、2、3、4或5年。在实施例中,融合体组合物的活性为维持于所述温度下之前的群体的活性的至少50%、60%、70%、80%、90%、95%或99%,例如通过以下中的一个或多个:

i)融合体与靶细胞的融合率高于非靶细胞,例如高至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍、5倍、10倍、20倍、50倍或100倍,例如在实例54的分析中;

ii)融合体与靶细胞的融合率高于其它融合体,例如高至少10%、20%、30%、40%、50%、60%、70%、80%或90%,例如在实例54的分析中;

iii)融合体与靶细胞的融合率使得在24、48或72小时之后,融合体中的药剂递送到至少10%、20%、30%、40%、50%、60%、70%、80%或90%的靶细胞,例如在实例54的分析中;或

iv)融合剂以至少或不超过10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000或1,000,000个拷贝的拷贝数存在,例如根据实例29的分析所测量。

在实施例中,融合体组合物在低于4C的温度下稳定至少1、2、3、6或12小时;1、2、3、4、5或6天;1、2、3或4周;1、2、3或6个月;或1、2、3、4或5年。在实施例中,融合体组合物在低于-20C的温度下稳定至少1、2、3、6或12小时;1、2、3、4、5或6天;1、2、3或4周;1、2、3或6个月;或1、2、3、4或5年。在实施例中,融合体组合物在低于-80C的温度下稳定至少1、2、3、6或12小时;1、2、3、4、5或6天;1、2、3或4周;1、2、3或6个月;或1、2、3、4或5年。

在实施例中,以下中的一个或多个:

i)源细胞不是293细胞;

ii)源细胞未被转化或永生化;

iii)源细胞使用除腺病毒介导的永生化以外的方法来转化或永生化,例如通过自发突变或端粒酶表达永生化;

iv)融合剂不是VSVG、SNARE蛋白或分泌性颗粒蛋白;

v)治疗剂不是Cre或EGFP;

vi)治疗剂为外源核酸(例如RNA,例如mRNA、miRNA或siRNA)或外源蛋白(例如抗体,例如抗体),例如在内腔中;或

vii)融合体不包含线粒体。

在实施例中,以下中的一个或多个:

i)源细胞不是293或HEK细胞;

ii)源细胞未被转化或永生化;

iii)源细胞使用除腺病毒介导的永生化以外的方法来转化或永生化,例如通过自发突变或端粒酶表达永生化;

iv)融合剂不是病毒融合剂;或

v)融合体的尺寸不在40与150nm之间,例如大于150nm、200nm、300nm、400nm或500nm。

在实施例中,以下中的一个或多个:

i)治疗剂是由源细胞表达的可溶性蛋白质;

ii)融合剂不是TAT、TAT-HA2、HA-2、gp41、阿尔茨海默氏β-淀粉样肽、仙台病毒蛋白或两亲性净阴性肽(WAE 11);

iii)融合剂是哺乳动物融合剂;

iv)融合体在其内腔中包含选自酶、抗体或抗病毒多肽的多肽;

v)融合体不包含外源治疗性跨膜蛋白;或

vi)融合体不包含CD63或GLUT4,或融合体包含小于或等于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%或10%CD63(例如约0.048%或更小),例如根据实例157中描述的方法所测定。

在实施例中,融合体:

i)不包含病毒、无感染性或不在宿主细胞中繁殖;

ii)不是病毒载体

iii)不是VLP(病毒样颗粒);

iv)不包含病毒结构蛋白,例如衍生自gag的蛋白,例如病毒衣壳蛋白,例如病毒荚膜蛋白,例如病毒核衣壳蛋白,或其中病毒衣壳蛋白的量为总蛋白的小于10%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%,例如根据质谱,例如使用实例53或161的分析;

v)不包含病毒基质蛋白;

vi)不包含病毒非结构蛋白;例如pol或其片段或变异体、病毒逆转录酶蛋白、病毒整合酶蛋白或病毒蛋白酶蛋白。

vii)不包含病毒核酸;例如病毒RNA或病毒DNA;

viii)包含病毒结构蛋白的每个囊泡小于10、50、100、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝;或

ix)融合体不是病毒体。

在一些实施例中,融合体包含(或被鉴别为包含)小于约0.01%、0.05%、0.1%、0.5%、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%、95%、96%、97%、98%或99%病毒衣壳蛋白(例如约0.05%病毒衣壳蛋白)。在实施例中,病毒衣壳蛋白为兔内源性慢病毒(RELIK)衣壳与亲环素A的复合物。在实施例中,病毒衣壳蛋白:总蛋白比为(或被鉴别为)约0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09或0.1。

在一些实施例中,融合体不包含(或被鉴别为不包含)gag蛋白或其片段或变异体,或gag蛋白或其片段或变异体的量为总蛋白的小于10%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%,例如根据实例53或161的分析。

在实施例中,融合体上的融合剂的拷贝数与病毒结构蛋白的拷贝数的比为至少1,000,000:1、100,000:1、10,000:1、1,000:1、100:1、50:1、20:1、10:1、5:1或1:1;或为100:1至50:1、50:1至20:1、20:1至10:1、10:1至5:1或1:1。在实施例中,融合体上的融合剂的拷贝数与病毒基质蛋白的拷贝数的比为至少1,000,000:1、100.000:1、10,000:1、1,000:1、100:1、50:1、20:1、10:1、5:1或1:1。

在实施例中,以下中的一个或多个:

i)融合体不包含水不可混溶的液滴;

ii)融合体包含水性内腔和亲水性外部;

iii)融合剂为蛋白质融合剂;或

iv)细胞器选自线粒体、高尔基体、溶酶体、内质网、液泡、内体、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、刺丝囊、过氧化物酶体、蛋白酶体、囊泡和应激颗粒。

在实施例中,以下中的一个或多个:

i)融合剂为哺乳动物融合剂或病毒融合剂;

ii)融合体不是通过用治疗或诊断物质装载融合体而制成;

iii)源细胞未装载治疗或诊断物质;

iv)融合体不包含多柔比星(doxorubicin)、***(dexamethasone)、环糊精、聚乙二醇、微小RNA(例如miR125)、VEGF受体、ICAM-1、E-选择素、氧化铁、荧光蛋白(例如GFP或RFP)、纳米颗粒或RNA酶,或不包含前述中的任一种的外源形式;或

v)融合体进一步包含具有一个或多个翻译后修饰,例如糖基化的外源治疗剂。

在实施例中,融合体为单层或多层的。

在实施例中,融合体的尺寸,或融合体群体的平均尺寸在源细胞的尺寸的约0.01%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%内,例如根据实例30的分析所测量。在实施例中,融合体的尺寸,或融合体群体的平均尺寸为源细胞的尺寸的小于约0.01%、0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%,例如根据实例30的分析所测量。在实施例中,融合体具有(或被鉴别为具有)小于亲本细胞的尺寸。在实施例中,融合体具有(或被鉴别为具有)在亲本细胞的约50%、60%、65%、70%、71%、72%、73%、74%、75%、80%或90%内的尺寸。在实施例中,融合体具有(或被鉴别为具有)亲本细胞的尺寸分布变化性的小于约70%、60%、50%、40%、30%、20%、10%、5%、1%或更小,例如在样品的约90%内。在实施例中,融合体具有(或被鉴别为具有)比亲本细胞小约40%、45%、50%、55%、56%、57%、58%、59%、60%、65%或70%的尺寸分布变化性,例如在样品的约90%内。在一些实施例中,融合体具有(或被鉴别为具有)大于30、35、40、45、50、55、60、65或70nm直径的平均尺寸。在实施例中,融合体具有约100、110、120、125、126、127、128、129、130、131、132、133、134、135、140或150nm直径的平均尺寸。在实施例中,融合体的尺寸,或融合体群体的平均尺寸在源细胞的尺寸的约0.01%-0.05%、0.05%-0.1%、0.1%-0.5%、0.5%-1%、1%-2%、2%-3%、3%-4%、4%-5%、5%-10%、10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%或80%-90%内,例如根据实例30的分析所测量。在实施例中,融合体的尺寸,或融合体群体的平均尺寸为源细胞的尺寸的小于约0.01%-0.05%、0.05%-0.1%、0.1%-0.5%、0.5%-1%、1%-2%、2%-3%、3%-4%、4%-5%、5%-10%、10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%或80%-90%,例如根据实例30的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为小于约500nm(例如小于约10、50、100、150、200、250、300、350、400或450nm),例如根据实例119、120或121的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为约80-180、90-170、100-160、110-150、120-140或130nm,例如根据实例119、120或121的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为约11,000nm至21,000nm,例如根据实例119、120或121的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为约10-22,000nm、12-20,000nm、14-18,720nm、20-16,000nm,例如根据实例119、120或121的分析所测量。在实施例中,融合体的体积,或融合体群体的平均体积为约0.01-0.1μm3、0.02-1μm3、0.03-1μm3、0.04-1μm3、0.05-0.09μm3、0.06-0.08μm3、0.07μm3,例如根据实例119、120或121的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为至少约10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm或250nm,例如根据实例32的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为约10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、150nm、200nm或250nm(例如±20%),例如根据实例32的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为至少约500nm、750nm、1,000nm、1,500nm、2,000nm、2,500nm、3,000nm、5,000nm、10,000nm或20,000nm,例如根据实例32的分析所测量。在实施例中,融合体的直径,或融合体群体的平均直径为约500nm、750nm、1,000nm、1,500nm、2,000nm、2,500nm、3,000nm、5,000nm、10,000nm或20,000nm(例如±20%),例如根据实例32的分析所测量。在实施例中,融合体群体具有(或被鉴别为具有)以下中的一个或多个:约40-90nm、45-60nm、50-55nm或53nm的10%分位数直径;约70-100nm、80-95nm、85-90nm或88nm的25%分位数直径;约200-250nm、210-240nm、220-230nm或226nm的75%分位数直径;或约4000-5000nm、4300-4600nm、4400-4500nm、4450nm的90%分位数,例如根据实例120的分析。

在实施例中,融合体组合物包含(或被鉴别为包含)约35-40、36-39、37-38或37.2ng/mL的GAPDH浓度,例如在实例149的分析中。在实施例中,融合体组合物的GAPDH浓度(或被鉴别为)在源细胞的GAPDH浓度的约1%、2%、5%、10%或20%内,例如在实例149的分析中。在实施例中,融合体组合物的GAPDH浓度(或被鉴别为)比源细胞的GAPDH浓度低至少约1%、2%、5%、10%或20%,例如在实例149的分析中。在实施例中,融合体组合物包含(或被鉴别为包含)小于约30、35、40、45、46、47、48、49、50、55、60、65或70μg GAPDH/g总蛋白。在实施例中,融合体组合物包含(或被鉴别为包含)小于约500、250、100或50μg GAPDH/g总蛋白。在实施例中,相比于融合体组合物,亲本细胞包含(或被鉴别为包含)至少1%、2.5%、5%、10%、15%、20%、30%、30%、50%或更多GAPDH/总蛋白。

在实施例中,以下中的一个或多个:

i)融合体不是外泌体;

ii)融合体是微囊泡;

iii)融合体包含非哺乳动物融合剂;

iv)融合体已被工程化以并入融合剂;

v)融合体包含外源融合剂;

vi)融合体的尺寸为至少80nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm,或融合体群体的平均尺寸为至少80nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm;

vii)融合体包含一个或多个细胞器,例如线粒体、高尔基体、溶酶体、内质网、液泡、内体、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、刺丝囊、过氧化物酶体、蛋白酶体、囊泡和应激颗粒;

viii)融合体包含细胞骨架或其组分,例如肌动蛋白、Arp2/3、形成蛋白、冠蛋白、肌缩蛋白、角蛋白、肌球蛋白或微管蛋白;

ix)融合体或包含多个融合体的组合物或制剂不具有1.08-1.22g/ml的浮选密度或具有至少1.18-1.25g/ml或1.05-1.12g/ml的密度,例如在蔗糖梯度离心分析中,例如如Théry等人,“外泌体从细胞培养上清液和生物体液的分离和表征(Isolation andcharacterization of exosomes from cell culture supernatants and biologicalfluids.)”《细胞生物学实验指南(Curr Protoc Cell Biol.)》2006年4月;第3章:第3.22节中所述;

x)相比于源细胞,脂质双层富集神经酰胺或鞘磷脂或其组合,或相比于源细胞,脂质双层不富集(例如耗尽)糖脂、游离脂肪酸或磷脂酰丝氨酸或其组合;

xi)融合体包含磷脂酰丝氨酸(PS)或CD40配体或PS和CD40配体二者,例如当在实例52或160的分析中测量时;

xii)相比于源细胞,融合体富集PS,例如在融合体群体中,至少5%、10%、20%、30%、40%、50%、60%、70%、80%或90%对PS呈阳性,例如根据Kanada M等人(2015)经由细胞外囊泡递送到靶细胞的生物分子的差异性命运(Differential fates ofbiomolecules delivered to target cells via extracellular vesicles).《美国国家科学院院刊(Proc Natl Acad Sci USA)》112:E1433-E1442的分析;

xiii)融合体基本上不含乙酰胆碱酯酶(AChE),或含有小于0.001、0.002、0.005、0.01,0.02、0.05、0.1、0.2、0.5、1、2、5、10、20、50、100、200、500或1000个AChE活性单元/μg蛋白质,例如根据实例67的分析;

xiv)融合体基本上不含四跨膜蛋白家族蛋白(例如CD63、CD9或CD81)、ESCRT相关蛋白(例如TSG101、CHMP4A-B或VPS4B)、Alix、TSG101、MHCI、MHCII、GP96、辅肌动蛋白-4、线粒体内膜蛋白(mitofilin)、同线蛋白(syntenin)-1、TSG101、ADAM10、EHD4、同线蛋白-1、TSG101、EHD1、脂阀结构蛋白(flotillin)-1、热休克70kDa蛋白(HSC70/HSP73、HSP70/HSP72)或其任何组合,或含有小于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、5%、或10%的任何个别外泌体标记蛋白和/或小于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、10%、15%、20%或25%的任何所述蛋白的总外泌体标记蛋白,或相比于源细胞脱富集这些蛋白质中的任何一种或多种,或不富集这些蛋白质中的任何一种或多种,例如根据实例44或157的分析;

xv)融合体的甘油醛3-磷酸脱氢酶(GAPDH)的水平低于500、250、100、50、20、10、5或1ng GAPDH/μg总蛋白或低于源细胞中的GAPDH水平,例如比源细胞中以ng/μg计的GAPDH/总蛋白水平低小于1%、2.5%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例45的分析;

xvi)融合体富集一种或多种内质网蛋白(例如钙联蛋白)、一种或多种蛋白酶体蛋白或一种或多种线粒体蛋白或其任何组合,例如其中钙联蛋白的量为小于500、250、100、50、20、10、5或1ng钙联蛋白/μg总蛋白,或其中相比于源细胞,融合体包含少1%、2.5%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%或90%的以ng/μg计的钙联蛋白/总蛋白,例如使用实例46或158的分析,或其中融合体中的钙联蛋白的平均分数含量为小于约1×10-4、1.5×10-4、2×10-4、2.1×10-4、2.2×10-4、2.3×10-4、2.4×10-4、2.43×10-4、2.5×10-4、2.6×10-4、2.7×10-4、2.8×10-4、2.9×10-4、3×10-4、3.5×10-4或4×10-4,或其中融合体的钙联蛋白/总蛋白的量比亲本细胞低约70%、75%、80%、85%、88%、90%、95%、99%或更大;

xvii)融合体包含外源药剂(例如外源蛋白、mRNA或siRNA),例如使用实例39或40的分析所测量;或

xviii)融合体可通过原子力显微镜固定于云母表面上至少30分钟,例如根据Kanada M等人(2015)经由细胞外囊泡递送到靶细胞的生物分子的差异性命运.《美国国家科学院院刊》112:E1433-E1442的分析。

在实施例中,以下中的一个或多个:

i)融合体是外泌体;

ii)融合体不是微囊泡;

iii)融合体的尺寸为小于80nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm,或融合体群体的平均尺寸为小于80nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm;

iv)融合体不包含细胞器;

v)融合体不包含细胞骨架或其组分,例如肌动蛋白、Arp2/3、形成蛋白、冠蛋白、肌缩蛋白、角蛋白、肌球蛋白或微管蛋白;

vi)融合体或包含多个融合体的组合物或制剂具有1.08-1.22g/ml的浮选密度,例如在蔗糖梯度离心分析中,例如如Théry等人,“外泌体从细胞培养上清液和生物体液的分离和表征”《细胞生物学实验指南》2006年4月;第3章:第3.22节中所述;

vii)相比于源细胞,脂质双层不富集(例如耗尽)神经酰胺或鞘磷脂或其组合,或相比于源细胞,脂质双层富集糖脂、游离脂肪酸或磷脂酰丝氨酸或其组合;

viii)相对于源细胞,融合体不包含或耗尽磷脂酰丝氨酸(PS)或CD40配体或PS和CD40配体二者,例如当在实例52或160的分析中测量时;

ix)相比于源细胞,融合体不富集(例如耗尽)PS,例如在融合体群体中,小于20%、30%、40%、50%、60%、70%、80%或90%对PS呈阳性,例如根据Kanada M等人(2015)经由细胞外囊泡递送到靶细胞的生物分子的差异性命运.《美国国家科学院院刊》112:E1433-E1442的分析;

x)融合体包含乙酰胆碱酯酶(AChE),例如至少0.001、0.002、0.005、0.01,0.02、0.05、0.1、0.2、0.5、1、2、5、10、20、50、100、200、500或1000个AChE活性单位/μg蛋白质,例如根据实例67的分析;

xi)融合体包含四跨膜蛋白家族蛋白(例如CD63、CD9或CD81)、ESCRT相关蛋白(例如TSG101、CHMP4A-B或VPS4B)、Alix、TSG101、MHCI、MHCII、GP96、辅肌动蛋白-4、线粒体内膜蛋白、同线蛋白-1、TSG101、ADAM10、EHD4、同线蛋白-1、TSG101、EHD1、脂阀结构蛋白-1、热休克70kDa蛋白(HSC70/HSP73、HSP70/HSP72)或其任何组合,或含有大于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、5%、或10%的任何个别外泌体标记蛋白和/或小于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、10%、15%、20%或25%的任何所述蛋白的总外泌体标记蛋白,或相比于源细胞富集这些蛋白质中的任何一种或多种,例如根据实例44或157的分析;

xii)融合体的甘油醛3-磷酸脱氢酶(GAPDH)的水平高于500、250、100、50、20、10、5或1ng GAPDH/μg总蛋白或低于源细胞中的GAPDH水平,例如比源细胞中以ng/μg计的GAPDH/总蛋白水平大至少1%、2.5%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例45的分析;

xiii)融合体不富集(例如耗尽)一种或多种内质网蛋白(例如钙联蛋白)、一种或多种蛋白酶体蛋白或一种或多种线粒体蛋白或其任何组合,例如其中钙联蛋白的量为小于500、250、100、50、20、10、5或1ng钙联蛋白/μg总蛋白,或其中相比于源细胞,融合体包含少1%、2.5%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%或90%的以ng/μg计的钙联蛋白/总蛋白,例如使用实例46或158的分析,或其中融合体中的钙联蛋白的平均分数含量为小于约1×10-4、1.5×10-4、2×10-4、2.1×10-4、2.2×10-4、2.3×10-4、2.4×10-4、2.43×10-4、2.5×10-4、2.6×10-4、2.7×10-4、2.8×10-4、2.9×10-4、3×10-4、3.5×10-4或4×10-4,或其中融合体的钙联蛋白/总蛋白的量比亲本细胞低约70%、75%、80%、85%、88%、90%、95%、99%或更大;或

xiv)融合体不能通过原子力显微镜固定于云母表面上至少30分钟,例如根据Kanada M等人(2015)经由细胞外囊泡递送到靶细胞的生物分子的差异性命运.《美国国家科学院院刊》112:E1433-E1442的分析。

在实施例中,融合体中的钙联蛋白的平均分数含量为(或被鉴别为)小于约1×10-4、1.5×10-4、2×10-4、2.1×10-4、2.2×10-4、2.3×10-4、2.4×10-4、2.43×10-4、2.5×10-4、2.6×10-4、2.7×10-4、2.8×10-4、2.9×10-4、3×10-4、3.5×10-4或4×10-4。在实施例中,融合体的钙联蛋白/总蛋白的量比亲本细胞低约70%、75%、80%、85%、88%、90%、95%、99%或更大。

在实施例中,以下中的一个或多个:

i)融合体不包含VLP;

ii)融合体不包含病毒;

iii)融合体不包含复制胜任型病毒;

iv)融合体不包含病毒蛋白,例如病毒结构蛋白,例如衣壳蛋白或病毒基质蛋白;

v)融合体不包含来自包膜病毒的衣壳蛋白;

vi)融合体不包含核衣壳蛋白;或

vii)融合剂不是病毒融合剂。

在实施例中,融合体包含细胞溶质。

在实施例中,以下中的一个或多个:

i)融合体或源细胞在植入至个体体内时不形成畸胎瘤,例如根据实例102的分析;

ii)融合体能够进行趋化作用,例如在相比于参考细胞(例如巨噬细胞)的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大内,例如使用实例58的分析;

iii)融合体能够在例如损伤位点归巢,其中融合体或细胞生物物质来自人类细胞,例如使用实例59的分析,例如其中源细胞为嗜中性粒细胞;或

iv)融合体能够进行吞噬作用,例如其中使用实例60的分析,可在0.5、1、2、3、4、5或6小时内检测到通过融合体的吞噬作用,例如其中源细胞为巨噬细胞。

在实施例中,在向个体(例如人类个体)施用之后,融合体或融合体组合物保留任何特征中的一、二、三、四、五、六个或更多个持续5天或更短,例如4天或更短、3天或更短、2天或更短、1天或更短,例如约12-72小时。

在实施例中,融合体具有以下特征中的一个或多个:

a)包含来自源细胞的一种或多种内源蛋白,例如膜蛋白或胞质蛋白;

b)包含至少10、20、50、100、200、500、1000、2000或5000种不同的蛋白质;

c)包含至少1、2、5、10、20、50或100种不同的糖蛋白;

d)融合体中至少10质量%、20质量%、30质量%、40质量%、50质量%、60质量%、70质量%、80质量%或90质量%的蛋白质为天然存在的蛋白质;

e)包含至少10、20、50、100、200、500、1000、2000或5000种不同的RNA;或

f)包含至少2、3、4、5、10或20种不同的脂质,例如选自CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG。

在实施例中,融合体已***纵以具有,或融合体不是天然存在的细胞且具有,或其中核不天然地具有以下特性中的一、二、三、四、五种或更多种:

a)部分核灭活导致核功能降低至少50%、60%、70%、80%、90%或更多,例如转录或DNA复制降低或二者均降低,例如其中通过实例19的分析来测量转录且通过实例20的分析来测量DNA复制;

b)融合体不能转录或其转录活性为参考细胞(例如源细胞)的转录活性的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例19的分析;

c)融合体不能进行核DNA复制或其核DNA复制为参考细胞(例如源细胞)的核DNA复制的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例20的分析;

d)融合体缺乏染色质或其染色质含量为参考细胞(例如源细胞)的染色质含量的小于1%、2.5%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,例如使用实例37的分析;

e)融合体缺乏核膜或其核膜的量为参考细胞(例如源细胞或Jurkat细胞)的核膜的量的小于50%、40%、30%、20%、10%、5%、4%、3%、2%或1%,例如根据实例36的分析;

f)融合体缺乏功能性核孔复合物或具有降低的核输入或输出活性,例如根据实例36的分析降低了至少50%、40%、30%、20%、10%、5%、4%、3%、2%或1%,或融合体缺乏一种或多种核孔蛋白,例如NUP98或Importin 7;

g)融合体不包含组蛋白或其组蛋白水平为源细胞(例如H1、H2a、H2b、H3或H4)的组蛋白水平的小于1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,例如根据实例37的分析;

h)融合体包含小于20、10、5、4、3、2或1个染色体;

i)核功能被消除;

j)融合体为去核的哺乳动物细胞;

k)通过机械力、通过辐射或通过化学消融将核去除或灭活(例如挤出);或

l)融合体来自例如在间期或有丝***期间完全或部分去除DNA的哺乳动物细胞。

在实施例中,融合体包含mtDNA或载体DNA。在实施例中,融合体不包含DNA。

在实施例中,源细胞为初级细胞、永生化细胞或细胞系(例如成髓细胞细胞系,例如C2C12)。在实施例中,融合体来自源细胞,所述源细胞具有修饰的基因组,例如具有降低的免疫原性(例如通过基因组编辑,例如以去除MHC蛋白或MHC复合物)。在实施例中,源细胞来自用抗炎信号处理的细胞培养物。在实施例中,源细胞来自用免疫抑制剂处理的细胞培养物。在实施例中,源细胞为基本上非免疫原性的,例如使用本文所述的分析。在实施例中,源细胞包含外源药剂,例如治疗剂。在实施例中,源细胞为重组细胞。

在实施例中,融合体进一步包含外源药剂,例如治疗剂,例如蛋白质或核酸(例如DNA、染色体(例如人类人工染色体)、RNA,例如mRNA或miRNA)。在实施例中,外源药剂以至少或不超过10、20、50、100、200、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝存在,例如由融合体所包含,或以每个融合体至少或不超过10、20、50、100、200、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000或1,000,000个拷贝的平均水平存在。在实施例中,融合体具有改变(例如提高或降低)水平的一种或多种内源分子,例如蛋白质或核酸,例如由用siRNA或基因编辑酶处理哺乳动物细胞所致。在实施例中,内源分子以例如至少或不超过10、20、50、100、200、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000、1,000,000、5,000,000、10,000,000、50,000,000、100,000,000、500,000,000或1,000,000,000个拷贝(例如包含在融合体中的拷贝)的平均水平存在,或以每个融合体至少或不超过10、20、50、100、200、500、1,000、2,000、5,000、10,000、20,000、50,000、100,000、200,000、500,000或1,000,000个拷贝的平均水平存在。在实施例中,内源分子(例如RNA或蛋白质)以比其于源细胞中的浓度大至少1、2、3、4、5、10、20、50、100、500、103、5.0×103、104、5.0×104、105、5.0×105、106、5.0×106、1.0×107、5.0×107或1.0×108的浓度存在。

在实施例中,活性剂选自蛋白质、蛋白质复合物(例如包含至少2、3、4、5、10、20或50个蛋白质,例如至少2、3、4、5、10、20或50个不同的蛋白质)多肽、核酸(例如DNA、染色体或RNA,例如mRNA、siRNA或miRNA)或小分子。在实施例中,外源药剂包含位点特异性核酸酶,例如Cas9分子、TALEN或ZFN。

在实施例中,融合剂为病毒融合剂,例如HA、HIV-1ENV、HHV-4、gp120或VSV-G。在实施例中,融合剂为哺乳动物融合剂,例如SNARE、Syncytin、myomaker、myomixer、myomerger或FGFRL1。在实施例中,融合剂在4-5、5-6、6-7、7-8、8-9或9-10的pH下有活性。在实施例中,融合剂在4-5、5-6、6-7、7-8、8-9或9-10的pH下没有活性。在实施例中,融合体在靶细胞的表面处融合至靶细胞。在实施例中,融合剂以溶酶体非依赖性方式促进融合。在实施例中,融合剂为蛋白质融合剂。在实施例中,融合剂为脂质融合剂,例如油酸、单油酸甘油酯、甘油酯、二酰甘油或改性不饱和脂肪酸。在实施例中,融合剂为化学融合剂,例如PEG。在实施例中,融合剂为小分子融合剂,例如氟烷,NSAID,如美洛昔康(meloxicam)、吡罗昔康(piroxicam)、替诺昔康(tenoxicam)和氯丙嗪。在实施例中,融合剂为重组的。在实施例中,融合剂以生物化学方式并入,例如融合剂以纯化蛋白的形式提供且在允许融合剂与脂质双层结合的条件下与脂质双层接触。在实施例中,融合剂以生物合成方式并入,例如在允许融合剂与脂质双层结合的条件下在源细胞中表达。

在实施例中,融合体结合靶细胞。在实施例中,靶细胞不是HeLa细胞,或靶细胞未被转化或永生化。

在涉及融合体组合物的一些实施例中,多个融合体为相同的。在一些实施例中,多个融合体为不同的。在一些实施例中,多个融合体来自一个或多个源细胞。在一些实施例中,多个融合体中的至少50%、60%、70%、80%、90%、95%或99%的直径在融合体组合物中的融合体的平均直径的10%、20%、30%、40%或50%内。在一些实施例中,多个融合体中的至少50%、60%、70%、80%、90%、95%或99%的体积在融合体组合物中的融合体的平均体积的10%、20%、30%、40%或50%内。在一些实施例中,融合体组合物具有源细胞群体的尺寸分布变化性的10%、50%或90%内的小于约90%、80%、70%、60%、50%、40%、30%、20%、10%、5%的尺寸分布变化性,例如基于实例31。在一些实施例中,多个融合体中的至少50%、60%、70%、80%、90%、95%或99%的融合剂拷贝数在融合体组合物中的融合体的平均融合剂拷贝数的10%、20%、30%、40%、50%、60%、70%、80%或90%内。在一些实施例中,多个融合体中的至少50%、60%、70%、80%、90%、95%或99%的治疗剂拷贝数在融合体组合物中的融合体的平均治疗剂拷贝数的10%、20%、30%、40%、50%、60%、70%、80%或90%内。在一些实施例中,融合体组合物包含至少105、106、107、108、109、1010、1011、1012、1013、1014或1015个或更多个融合体。在一些实施例中,融合体组合物的体积为至少1μl、2μl、5μl、10μl、20μl、50μl、100μl、200μl、500μl、1ml、2ml、5ml或10ml。

在一些实施例中,相比于参考靶细胞群体,融合体组合物将货物递送至靶细胞群体中至少40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%数目的细胞。

在一些实施例中,相比于参考靶细胞群体或非靶细胞群体,融合体组合物将至少40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的货物递送至靶细胞群体。在一些实施例中,相比于参考靶细胞群体或非靶细胞群体,融合体组合物将多至少40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%或99%的货物递送至靶细胞群体。

在一些实施例中,少于10%的货物通过内吞作用进入细胞。

在一些实施例中,内吞作用抑制剂为溶酶体酸化抑制剂,例如巴弗洛霉素A1。在一些实施例中,内吞作用抑制剂为发动蛋白抑制剂,例如Dynasore。

在一些实施例中,靶细胞群体在生理pH下(例如在7.3-7.5之间,例如在7.38-7.42之间)。

在一些实施例中,使用内吞作用抑制分析,例如实例90、92或135的分析来确定递送的货物。

在一些实施例中,货物通过发动蛋白非依赖性途径或溶酶体酸化非依赖性途径、巨胞饮非依赖性途径(例如其中内吞作用抑制剂为巨胞饮抑制剂,例如5-(N-乙基-N-异丙基)阿米洛利(EIPA),例如浓度为25μM)、或肌动蛋白非依赖性途径(例如其中内吞作用抑制剂为肌动蛋白聚合抑制剂,例如Latrunculin B,例如浓度为6μM)进入细胞。

在一些实施例中,多个融合体进一步包含靶向部分。在实施例中,靶向部分包含在融合剂中或包含在独立分子中。

在一些实施例中,当多个融合体与包含靶细胞和非靶细胞的细胞群体接触时,货物存在于比非靶细胞多至少10倍的靶细胞中。

在一些实施例中,当多个融合体与包含靶细胞和非靶细胞的细胞群体接触时,货物存在于比非靶细胞高至少2倍、5倍、10倍、20倍或50倍的靶细胞中和/或货物存在于比参考细胞高至少2倍、5倍、10倍、20倍或50倍的靶细胞中。

在一些实施例中,多个融合体以比非靶细胞高至少50%的速率与靶细胞融合。

在一些实施例中,通过显微法,例如使用实例124的分析来测量货物的存在。在一些实施例中,通过显微法,例如使用实例54的分析来测量融合。

在一些实施例中,靶向部分特异性针对靶细胞上的细胞表面标记。在实施例中,细胞表面标记为皮肤细胞、心肌细胞、肝细胞、肠细胞(例如小肠细胞)、胰腺细胞、脑细胞、***细胞、肺细胞、结肠细胞或骨髓细胞的细胞表面标记。

在一些实施例中,融合剂(例如重靶向融合剂)包含弹状病毒科融合剂(例如VSV-G)、丝状病毒科融合剂、沙粒病毒科融合剂、披膜病毒科融合剂、黄病毒科融合剂、布尼亚病毒科融合剂或嗜肝DNA病毒科(hapadnaviridae)融合剂(例如Hep B),或其衍生物。

在一些实施例中,当在内吞作用抑制剂存在下与靶细胞群体接触时,和当与未用内吞作用抑制剂处理的参考靶细胞群体接触时,相比于参考靶细胞群体,多个融合体将货物递送至靶细胞群体中至少30%数目的细胞。

在一些实施例中,当在内吞作用抑制剂存在下与靶细胞群体接触时,和当与未用内吞作用抑制剂处理的参考靶细胞群体接触时,相比于参考靶细胞群体,多个融合体在靶细胞群体中递送至少30%的货物。

在一些实施例中,当与靶细胞群体接触时,融合体将货物递送至除内体或溶酶体以外的靶细胞位置,例如细胞溶质。在实施例中,将少于50%、40%、30%、20%或10%的货物递送至内体或溶酶体。

在一些实施例中,使用质谱,例如使用实例53或161的分析来确定融合体组合物中的病毒衣壳蛋白的量。

在一些实施例中,多个融合体包含外泌体、微囊泡或其组合。

在一些实施例中,多个融合体的平均尺寸为至少50nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm。在其它实施例中,多个融合体的平均尺寸为小于100nm、80nm、60nm、40nm或30nm。

在一些实施例中,源细胞选自嗜中性粒细胞、HEK293细胞、粒细胞、间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞。

在一些实施例中,多个融合体包含细胞生物物质。在一些实施例中,多个融合体包含去核细胞。

在一些实施例中,融合剂(例如重靶向融合剂)包含哺乳动物融合剂。在一些实施例中,融合剂(例如重靶向融合剂)包含病毒融合剂。在一些实施例中,融合剂(例如重靶向融合剂)为蛋白质融合剂。在一些实施例中,融合剂(例如重靶向融合剂)包含选自以下的序列:尼帕(Nipah)病毒蛋白F、麻疹病毒F蛋白、图帕伊阿(tupaia)副粘病毒F蛋白、副粘病毒F蛋白、亨德拉(Hendra)病毒F蛋白、亨尼帕病毒(Henipavirus)F蛋白、麻疹病毒F蛋白、呼吸道病毒F蛋白、仙台(Sendai)病毒F蛋白、腮腺炎病毒F蛋白或禽腮腺炎病毒(avulavirus)F蛋白,或其衍生物。

在一些实施例中,融合剂(例如重靶向融合剂)在4-5、5-6、6-7、7-8、8-9或9-10的pH下有活性。在一些实施例中,融合剂(例如重靶向融合剂)在4-5、5-6、6-7、7-8、8-9或9-10的pH下没有活性。

在一些实施例中,融合剂以每个融合体至少1、2、5或10个拷贝的拷贝数存在。

在一些实施例中,融合剂(例如重靶向融合剂)包含尼帕病毒蛋白G、麻疹蛋白H、图帕伊阿副粘病毒H蛋白、副粘病毒G蛋白、副粘病毒H蛋白、副粘病毒HN蛋白、麻疹病毒H蛋白、呼吸道病毒HN蛋白、仙台HN蛋白、腮腺炎病毒HN蛋白、禽腮腺炎病毒HN蛋白,或其衍生物。在一些实施例中,融合剂(例如重靶向融合剂)包含选自以下的序列:尼帕病毒F和G蛋白、麻疹病毒F和H蛋白、图帕伊阿副粘病毒F和H蛋白、副粘病毒F和G蛋白或F和H蛋白或F和HN蛋白、亨德拉病毒F和G蛋白、亨尼帕病毒F和G蛋白、麻疹病毒F和H蛋白、呼吸道病毒F和HN蛋白、仙台病毒F和HN蛋白、腮腺炎病毒F和HN蛋白或禽腮腺炎病毒F和HN蛋白,或其衍生物,或其任何组合。

在一些实施例中,货物包含外源蛋白或外源核酸。在一些实施例中,货物包含或编码胞质蛋白。在一些实施例中,货物包含或编码膜蛋白。在一些实施例中,货物包含治疗剂。在一些实施例中,货物以每个融合体至少1、2、5、10、20、50、100或200个拷贝(例如每个融合体至多约1,000个拷贝)的拷贝数存在。在一些实施例中,融合剂(例如重靶向融合剂)的拷贝数与货物的拷贝数的比为1000:1至1:1、或500:1至1:1、或250:1至1:1、或150:1至1:1、或100:1至1:1、或75:1至1:1、或50:1至1:1、或25:1至1:1、或20:1至1:1、或15:1至1:1、或10:1至1:1、或5:1至1:1、或2:1至1:1、或1:1至1:2。

在一些实施例中,融合体组合物:

a)符合药物或良好生产规范(GMP)标准;

b)是根据良好生产规范(GMP)制成的;

c)具有低于预定参考值的病原体水平,例如基本上不含病原体;或

d)具有低于预定参考值的污染物水平,例如基本上不含污染物。

在一些实施例中,融合体组合物在低于4、0、-4、-10、-12、-16、-20、-80或-160℃的温度下。

在一些实施例中,融合体组合物包含病毒衣壳蛋白或DNA整合多肽。在一些实施例中,货物包含病毒基因组。

在一些实施例中,融合体组合物能够将核酸递送至靶细胞,例如以稳定地修饰靶细胞的基因组,例如用于基因疗法。

在一些实施例中,融合体组合物不包含病毒核衣壳蛋白,或病毒核衣壳蛋白的量为总蛋白的小于10%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%,例如根据质谱,例如使用实例53或161的分析

在实施例中,本文所述的药物组合物具有以下特征中的一个或多个:

a)药物组合物符合药物或良好生产规范(GMP)标准;

b)药物组合物是根据良好生产规范(GMP)制成的;

c)药物组合物的病原体水平低于预定参考值,例如基本上不含病原体;

d)药物组合物的污染物水平低于预定参考值,例如基本上不含污染物;或

e)药物组合物具有低免疫原性,例如如本文所述。

在实施例中,药物组合物的货物包含治疗剂。

在实施例中,生物功能选自:

a)调节,例如抑制或刺激酶;

b)调节,例如提高或降低个体中分子(例如蛋白质、核酸或代谢物、药物或毒素)的水平,例如通过抑制或刺激合成或通过抑制或刺激因子降解;

c)调节,例如提高或降低靶细胞或组织的活力;或

d)调节蛋白质状态,例如增加或减少蛋白质的磷酸化,或调节蛋白质构象;

e)促进伤口愈合;

f)调节,例如增加或减少两个细胞之间的相互作用;

g)调节,例如促进或抑制细胞分化;

h)改变个体中因子(例如蛋白质、核酸、代谢物、药物或毒素)的分布;

i)调节,例如增加或减少免疫反应;或

j)调节,例如增加或减少细胞向靶组织的募集。

在本文的治疗方法的一些实施例中,多个融合体具有局部作用。在一些实施例中,多个融合体具有远端作用。

在一些实施例中,个体患有癌症、发炎性病症、自身免疫疾病、慢性疾病、发炎、器官功能受损、传染病、代谢疾病、退化性病症、遗传病(例如遗传缺陷、隐性遗传病症或显性遗传病症)或损伤。在一些实施例中,个体患有传染病且融合体包含传染病的抗原。在一些实施例中,个体具有遗传缺陷且融合体包含个体缺乏的蛋白质、或编码所述蛋白质的核酸(例如mRNA)、或编码所述蛋白质的DNA、或编码所述蛋白质的染色体、或包含编码所述蛋白质的核酸的核。在一些实施例中,个体患有显性遗传病症,且融合体包含显性突变体等位基因的核酸抑制剂(例如siRNA或miRNA)。在一些实施例中,个体患有显性遗传病症,和/或融合体包含显性突变体等位基因的核酸抑制剂(例如siRNA或miRNA),和/或融合体还包含编码未被核酸抑制剂靶向的突变基因的非突变等位基因的mRNA。在一些实施例中,个体需要疫苗接种。在一些实施例中,个体需要例如受伤部位的再生。

在一些实施例中,向个体施用融合体组合物至少1、2、3、4或5次。

在一些实施例中,向个体全身(例如经口、非经肠、皮下、静脉内、肌肉内、腹膜内)或局部施用融合体组合物。在一些实施例中,向个体施用融合体组合物,使得融合体组合物到达选自以下的靶组织:肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳或眼睛。在一些实施例中(例如其中个体患有自身免疫疾病),融合体组合物与免疫抑制剂,例如糖皮质激素、细胞生长抑制剂、抗体或免疫亲和素调节剂共同施用。在一些实施例中(例如其中个体患有癌症或传染病),融合体组合物与免疫刺激剂,例如佐剂、白介素、细胞因子或趋化因子共同施用。在一些实施例中,施用融合体组合物引起个体的靶细胞中的基因的上调或下调,例如其中融合体包含转录活化子或抑制子、翻译活化子或抑制子或表观遗传活化子或抑制子。

在本文的制备方法的一些实施例中,提供表达融合剂的源细胞包含在源细胞中表达外源融合剂或上调内源融合剂于源细胞中的表达。在一些实施例中,方法包含使源细胞的细胞核灭活。

在实施例中,融合体组合物包含至少105、106、107、108、109、1010、1011、1012、1013、1014或1015个融合体。在实施例中,融合体组合物包含至少10ml、20ml、50ml、100ml、200ml、500ml、1L、2L、5L、10L、20L或50L。在实施例中,方法包含对哺乳动物细胞去核,例如通过化学去核、使用机械力(例如使用过滤器或离心机)、细胞骨架的至少部分破坏或其组合。在实施例中,方法包含在源细胞中表达融合剂或其它膜蛋白。在实施例中,方法包含以下中的一个或多个:囊泡化、低渗处理、挤压或离心。在实施例中,方法包含在细胞中遗传表达外源药剂或将外源药剂装载至细胞或融合体中。在实施例中,方法包含使细胞(例如源细胞)与编码多肽药剂的DNA接触,例如在使细胞核灭活,例如使细胞(例如源细胞)去核之前。在实施例中,方法包含使细胞与编码多肽药剂的RNA接触,例如在使细胞核灭活,例如使细胞去核之前或之后。在实施例中,方法包含将治疗剂(例如核酸或蛋白质)引入至融合体中,例如通过电穿孔。

在实施例中,融合体来自哺乳动物细胞,所述哺乳动物细胞具有修饰的基因组,例如以降低免疫原性(例如通过基因组编辑,例如以去除MHC蛋白或MHC复合物)。在实施例中,源细胞来自用抗炎信号处理的细胞培养物。在实施例中,方法进一步包含使步骤a)的源细胞与免疫抑制剂或抗炎信号接触,例如在使细胞核灭活,例如使细胞去核之前或之后。

在一些实施例中,如果确定可检测水平,例如高于参考值的值,则丢弃含有多个融合体或融合体组合物的样品。

在一些实施例中,第一融合剂不是脂肽。

在评估个体中引起受体细胞形成的靶细胞的融合体含量(例如例如与靶细胞融合的融合体)的方法的一些实施例中,方法进一步包含从个体收集生物样品。在实施例中,生物样品包括一个或多个受体细胞。

在评估个体中靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法的一些实施例中,方法进一步包含将生物样品中的受体细胞与生物样品中未融合的融合体分离,例如通过离心。在一些实施例中,方法进一步包含相对于生物样品中未融合的融合体富集受体细胞,例如通过离心。在一些实施例中,方法进一步包含相对于生物样品中的非靶细胞富集靶细胞,例如通过FACS。

在评估个体中靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法的一些实施例中,与融合体组合物相关的活性选自代谢物的存在或水平、生物标记的存在或水平(例如蛋白质水平或翻译后修饰,例如磷酸化或***)。

在评估个体中靶细胞的融合体含量(例如与靶细胞融合的融合体)的方法的一些实施例中,与融合体组合物相关的活性为免疫原性。在实施例中,靶细胞为CD3+细胞且生物样品为从个体收集的血液样品。在实施例中,从血液样品富集血细胞,例如使用缓冲氯化铵溶液。在实施例中,将富集的血细胞与抗CD3抗体(例如鼠类抗CD3-FITC抗体)一起培育且选择CD3+细胞,例如通过荧光激活细胞分选术。在实施例中,关于细胞表面上抗体的存在对细胞,例如分选的细胞,例如CD3+细胞进行分析,例如通过用抗IgM抗体染色。在一些实施例中,如果抗体以高于参考水平的水平存在,则将个体鉴别为具有针对受体细胞的免疫反应。

在实施例中,通过细胞溶解分析来分析免疫原性。在实施例中,将来自生物样品的受体细胞与能够溶解其它细胞的免疫效应细胞共培育。在实施例中,免疫效应细胞来自所述个体或来自未施用融合体组合物的个体。例如,在实施例中,通过PBMC细胞溶解分析来评估免疫原性。在实施例中,将来自生物样品的受体细胞与来自个体的外周血单核细胞(PBMC)或来自未施用融合体组合物的个体的对照PBMC共培育,且接着评估PBMC对受体细胞的溶解。在实施例中,通过自然杀手(NK)细胞溶解分析来评估免疫原性。在实施例中,将受体细胞与来自个体的NK细胞或来自未施用融合体组合物的个体的对照NK细胞共培育,且接着评估NK细胞对受体细胞的溶解。在实施例中,通过CD8+T细胞溶解分析来评估免疫原性。在实施例中,将受体细胞与来自个体的CD8+T细胞或来自未施用融合体组合物的个体的对照CD8+T细胞共培育,且接着评估CD8+T细胞对靶细胞的溶解。在一些实施例中,如果细胞溶解以高于参考水平的水平发生,则将个体鉴别为具有针对受体细胞的免疫反应。

在一些实施例中,通过受体细胞的吞噬作用(例如通过巨噬细胞)来分析免疫原性。在实施例中,受体细胞未被巨噬细胞作为吞噬的目标。在实施例中,生物样品为从个体收集的血液样品。在实施例中,从血液样品富集血细胞,例如使用缓冲氯化铵溶液。在实施例中,将富集的血细胞与抗CD3抗体(例如鼠类抗CD3-FITC抗体)一起培育且选择CD3+细胞,例如通过荧光激活细胞分选术。在实施例中,将荧光标记的CD3+细胞与巨噬细胞一起培育且接着测试巨噬细胞内的细胞内荧光,例如通过流式细胞测量术。在一些实施例中,如果巨噬细胞吞噬作用以高于参考水平的水平发生,则将个体鉴别为具有针对受体细胞的免疫反应。

在一些实施例中,本文所描述的方法包含测量或测定靶细胞的融合体含量,例如融合体与靶细胞的融合(例如测定融合是否已发生),例如如实例54或124中所述。在实施例中,可检测标记可存在于融合体中(例如结合至融合体中的货物或有效负载分子)。在其中货物或有效负载包含蛋白质的实施例中,可直接检测货物或有效负载,例如使用结合部分(例如抗体,或其抗原结合片段)。在某些实施例中,蛋白质有效负载与可检测部分,例如可与抗体分子特异性结合的部分相关(例如与其结合)。在其中货物或有效负载包含核酸(例如DNA或mRNA)的实施例中,可使用能够与核酸杂交的核酸探针,或使用能够与核酸所编码的多肽特异性结合的结合部分(例如抗体,或其抗原结合片段)来检测货物或有效负载。在实施例中,通过检测可检测标记来确定融合体与靶细胞的融合。在实施例中,通过测量货物或有效负载(例如核酸货物或有效负载所编码的多肽或非编码RNA)的表达来确定融合体与靶细胞的融合。在实施例中,通过测量货物或有效负载活性的下游标记来确定融合体与靶细胞的融合。在一些实施例中,在测量或测定靶细胞或受体细胞的融合剂含量,例如融合体与靶细胞的融合之前从个体分离靶细胞或受体细胞。在实施例中,靶细胞或受体细胞还用内体或溶酶体染料或抗体染色以确定有效负载是否存在于内体或溶酶体中。在一些实施例中,有效负载不与内体或溶酶体共定位,或小于50%、40%、30%、20%、10%、5%、2%或1%的有效负载与内体或溶酶体共定位。在实施例中,受体细胞还用细胞质、细胞核、线粒体或质膜染料或抗体染色以确定有效负载是否与靶区室,如细胞质、细胞核、线粒体或质膜共定位;在此类实施例中,有效负载将与细胞核、线粒体或质膜一起定位。

在实施例中,本文的制备融合体的方法包含在源细胞中表达(例如过表达)ARRDC1或其活性片段或变异体。在实施例中,方法进一步包含将融合体从表达ARRDC1的源细胞分离。在实施例中,方法产生每毫升至少1.2×1011、1.4×1011、1.6×1011、1.8×1011、2.0×1011、2.2×1011、2.4×1011、2.6×1011或2.8×1011个粒子,例如每毫升至多约3×1011个粒子。在一些实施例中,相比于以不表达或不过表达ARRDC1或其活性片段或变异体的另外类似的源细胞进行的相同方法,所述方法产生每毫升多约1.2、1.4、1.6、1.8、2、3、4、5、6、7、8、9或10倍的粒子。在一些实施例中,产生自源细胞的融合体包含表达(例如过表达)ARRDC1或其活性片段或变异体,当与靶细胞接触时,相比于产生自不表达或不过表达ARRDC1或其活性片段或变异体的另外类似的源细胞的融合体,产生多约至少2、3、4、5、6、7、8、9、10、15或20倍的细胞的可检测货物递送,例如使用显微镜分析,例如实例170的分析。

列举的实施例

1.一种融合体组合物,其包含衍生自源细胞的多个融合体,其中所述多个融合体包含:

(a)脂质双层,

(b)包含细胞溶质的内腔,其中内腔被脂质双层包围;

(c)安置于脂质双层中的外源或过表达的融合剂,

(d)货物;且

其中融合体不包含核;

其中融合体组合物中的病毒衣壳蛋白的量小于总蛋白的1%;

其中当在内吞作用抑制剂存在下与靶细胞群体接触时,和当与未用内吞作用抑制剂处理的参考靶细胞群体接触时,相比于参考靶细胞群体,多个融合体将货物递送至靶细胞群体中至少30%数目的细胞。

2.根据实施例1所述的融合体组合物,相比于参考靶细胞群体或非靶细胞群体,其将货物递送至靶细胞群体中至少40%、50%、60%、70%、或80%数目的细胞;或相比于参考靶细胞群体或非靶细胞群体,其将货物(至少40%、50%、60%、70%或80%的货物)递送至靶细胞群体。

3.根据实施例1或2所述的融合体组合物,其中少于10%的货物通过内吞作用进入细胞。

4.根据前述实施例中任一项所述的融合体组合物,其中内吞作用抑制剂为溶酶体酸化抑制剂,例如巴弗洛霉素A1。

5.根据前述实施例中任一项所述的融合体组合物,其中递送的货物是使用内吞作用抑制分析,例如实例90或135的分析来确定。

6.根据前述实施例中任一项所述的融合体组合物,其中货物通过发动蛋白非依赖性途径或溶酶体酸化非依赖性途径、巨胞饮非依赖性途径(例如其中内吞作用抑制剂为巨胞饮抑制剂,例如5-(N-乙基-N-异丙基)阿米洛利(EIPA),例如浓度为25μM)、或肌动蛋白非依赖性途径(例如其中内吞作用抑制剂为肌动蛋白聚合抑制剂,例如Latrunculin B,例如浓度为6μM)进入细胞。

7.根据前述实施例中任一项所述的融合体组合物,其中所述多个融合体进一步包含靶向部分。

8.根据实施例7所述的融合体组合物,其中靶向部分包含在融合剂中或包含在独立分子中。

9.根据前述实施例中任一项所述的融合体组合物,其中当多个融合体与包含靶细胞和非靶细胞的细胞群体接触时:

(i)货物存在于比非靶细胞多至少10倍的靶细胞中,或

(ii)靶细胞中存在的货物比非靶细胞和/或参考细胞高至少2倍、5倍、10倍、20倍或50倍。

10.根据前述实施例中任一项所述的融合体组合物,其中多个融合体与靶细胞的融合率比与非靶细胞高至少50%。

11.一种融合体组合物,其包含衍生自源细胞的多个融合体,且其中所述多个融合体包含:

(a)脂质双层,

(b)包含细胞溶质的内腔,其中内腔被脂质双层包围;

(c)安置于脂质双层中的外源或过表达的重靶向融合剂;

(d)货物;且

其中融合体不包含核;

其中融合体组合物中的病毒衣壳蛋白的量小于总蛋白的1%;

其中:

(i)当多个融合体与包含靶细胞和非靶细胞的细胞群体接触时,货物存在于比非靶细胞多至少10倍的靶细胞中,或相比于参考细胞群体,多至少10倍的货物被递送至所述细胞群体,或

(ii)多个融合体与靶细胞的融合率比与非靶细胞高至少50%,或相比于参考细胞群体,多至少50%的货物被递送至所述细胞群体。

12.根据实施例11所述的融合体组合物,其中货物的存在是通过显微法,例如使用实例124的分析来测量。

13.根据实施例11所述的融合体组合物,其中融合是通过显微法,例如使用实例54的分析来测量。

14.根据实施例7至13中任一项所述的融合体组合物,其中靶向部分特异性针对靶细胞上的细胞表面标记。

15.根据实施例14所述的融合体组合物,其中细胞表面标记为皮肤细胞、心肌细胞、肝细胞、肠细胞(例如小肠细胞)、胰腺细胞、脑细胞、***细胞、肺细胞、结肠细胞或骨髓细胞的细胞表面标记。

16.根据实施例11至15中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含弹状病毒科融合剂(例如VSV-G)、丝状病毒科融合剂、沙粒病毒科融合剂、披膜病毒科融合剂、黄病毒科融合剂、布尼亚病毒科融合剂或嗜肝DNA病毒科(hapadnaviridae)融合剂(例如Hep B),或其衍生物。

17.根据实施例7至16中任一项所述的融合体组合物,其中多个融合体当在内吞作用抑制剂存在下与靶细胞群体接触时,和当与未用内吞作用抑制剂处理的参考靶细胞群体接触时,

(i)相比于参考靶细胞群体,将货物递送至靶细胞群体中至少30%数目的细胞,

(ii)相比于参考靶细胞群体,将至少30%的货物递送至靶细胞群体;或

(iii)相比于参考靶细胞群体,将多至少30%的货物递送至靶细胞群体。

18.根据前述实施例中任一项所述的融合体组合物,其在与靶细胞群体接触时,将货物递送至除内体或溶酶体以外的靶细胞位置,例如细胞溶质。

19.根据实施例18所述的融合体组合物,其中少于50%、40%、30%、20%或10%的货物被递送至内体或溶酶体。

20.根据前述实施例中任一项所述的融合体组合物,其中融合体组合物中的病毒衣壳蛋白的量是使用质谱,例如使用实例53或161的分析来测定;且/或

其中融合体组合物不包含病毒核衣壳蛋白,或病毒核衣壳蛋白的量为总蛋白的小于10%、5%、4%、3%、2%、1%、0.5%、0.2%或0.1%,例如根据质谱,例如使用实例53或161的分析。

21.根据前述实施例中任一项所述的融合体组合物,其中多个融合体包含外泌体、微囊泡或其组合。

22.根据前述实施例中任一项所述的融合体组合物,其中多个融合体的平均尺寸为至少50nm、100nm、200nm、500nm、1000nm、1200nm、1400nm或1500nm。

23.根据实施例1至21中任一项所述的融合体组合物,其中多个融合体的平均尺寸为小于100nm、80nm、60nm、40nm或30nm。

24.根据前述实施例中任一项所述的融合体组合物,其中源细胞选自嗜中性粒细胞、HEK293细胞、粒细胞、间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞。

25.根据前述实施例中任一项所述的融合体组合物,其中多个融合体包含细胞生物物质。

26.根据前述实施例中任一项所述的融合体组合物,其中多个融合体包含去核细胞。

27.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含哺乳动物融合剂。

28.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含病毒融合剂。

29.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)在4-5、5-6、6-7、7-8、8-9或9-10的pH下有活性。

30.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)在4-5、5-6、6-7、7-8、8-9或9-10的pH下没有活性。

31.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)为蛋白质融合剂。

32.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含选自以下的序列:尼帕病毒蛋白F、麻疹病毒F蛋白、图帕伊阿副粘病毒F蛋白、副粘病毒F蛋白、亨德拉病毒F蛋白、亨尼帕病毒F蛋白、麻疹病毒F蛋白、呼吸道病毒F蛋白、仙台病毒F蛋白、腮腺炎病毒F蛋白或禽腮腺炎病毒F蛋白,或其衍生物。

33.根据前述实施例中任一项所述的融合体组合物,其中融合剂以每个融合体至少2、5或10个拷贝的拷贝数存在。

34.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含尼帕病毒蛋白G、麻疹蛋白H、图帕伊阿副粘病毒H蛋白、副粘病毒G蛋白、副粘病毒H蛋白、副粘病毒HN蛋白、麻疹病毒H蛋白、呼吸道病毒HN蛋白、仙台HN蛋白、腮腺炎病毒HN蛋白、禽腮腺炎病毒HN蛋白,或其衍生物。

35.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)包含选自以下的序列:尼帕病毒F和G蛋白、麻疹病毒F和H蛋白、图帕伊阿副粘病毒F和H蛋白、副粘病毒F和G蛋白或F和H蛋白或F和HN蛋白、亨德拉病毒F和G蛋白、亨尼帕病毒F和G蛋白、麻疹病毒F和H蛋白、呼吸道病毒F和HN蛋白、仙台病毒F和HN蛋白、腮腺炎病毒F和HN蛋白或禽腮腺炎病毒F和HN蛋白,或其衍生物,或其任何组合。

36.根据前述实施例中任一项所述的融合体组合物,其中货物包含外源蛋白或外源核酸。

37.根据前述实施例中任一项所述的融合体组合物,其中货物包含或编码胞质蛋白或膜蛋白。

38.根据前述实施例中任一项所述的融合体组合物,其中货物包含治疗剂。

39.根据前述实施例中任一项所述的融合体组合物,其中货物以每个融合体至少1、2、5、10、20、50、100或200个拷贝(例如每个融合体至多约1,000个拷贝)的拷贝数存在。

40.根据前述实施例中任一项所述的融合体组合物,其中融合剂(例如重靶向融合剂)的拷贝数与货物的拷贝数的比为1000:1至1:1、500:1至1:1、250:1至1:1、150:1至1:1、100:1至1:1、75:1至1:1、50:1至1:1、25:1至1:1、20:1至1:1、15:1至1:1、10:1至1:1、5:1至1:1、2:1至1:1或1:1至1:2。

41.根据前述实施例中任一项所述的融合体组合物,其中以下中的一个或多个:

a)融合体组合物的融合剂与CD63的比为约100-10,000、500-5,000、1000-5000、2000-4000、2500-3500、2900-2930、2910-2915或2912.0,例如根据质谱分析;或

b)融合体组合物的蛋白质货物与CD63的比为约5-35、10-30、15-25、16-19、18-19或18.6;或

c)融合体中少于15%、20%或25%的蛋白质为外泌体蛋白。

42.根据前述实施例中任一项所述的融合体组合物,其中以下中的一个或多个:

a)融合剂占融合体中的总蛋白的约1-30%、5-20%、10-15%、12-15%、13-14%或13.6%,例如根据质谱分析;

b)融合剂与GAPDH的比为约20-120、40-100、50-90、60-80、65-75、68-70或69,例如根据质谱分析;

c)融合剂与CNX的比为约200-900、300-800、400-700、500-600、520-590、530-580、540-570、550-560或558.4,例如根据质谱分析;

d)融合体中至少1%、2%、3%、4%、5%、6%、7%、8%、9%或10%的蛋白质为核糖体蛋白,或融合体中约1%-20%、3%-15%、5%-12.5%、7.5%-11%或8.5%-10.5%或9%-10%的蛋白质为核糖体蛋白。

43.根据前述实施例中任一项所述的融合体组合物,其中源细胞表达(例如过表达)ARRDC1或其活性片段或变异体。

44.根据前述实施例中任一项所述的融合体组合物,其具有约1-3、1-10、1-100、3-10、4-9、5-8、6-7、15-100、60-200、80-180、100-160、120-140、3-100、4-100、5-100、6-100、15-100、80-100、3-200、4-200、5-200、6-200、15-200、80-200、100-200、120-200、300-1000、400-900、500-800、600-700、640-690、650-680、660-670、100-10,000或664.9的融合剂与ARRDC1的比,例如根据质谱分析。

45.根据前述实施例中任一项所述的融合体组合物,其中呈总蛋白含量的百分比形式的ARRDC1的水平为至少约0.01%、0.02%、0.03%、0.04%、0.05%、0.1%、0.5%、1%、5%、10%、15%、20%或25%;或呈总蛋白含量的百分比形式的ARRDC1的水平为约0.01-25%、0.5%-20%、2%-15%或5%-10%。

46.根据前述实施例中任一项所述的融合体组合物,其具有约1,000-10,000、2,000-5,000、3,000-4,000、3,050-3,100、3,060-3,070或3,064的融合剂与tsg101的比,例如使用质谱分析,例如实例162的分析。

47.根据前述实施例中任一项所述的融合体组合物,其具有约10-30、15-25、18-21、19-20或19.5的货物与tsg101的比,例如使用质谱分析,例如实例163的分析。

48.根据前述实施例中任一项所述的融合体组合物,其中呈总蛋白含量的百分比形式的TSG101的水平为至少约0.001%、0.002%、0.003%、0.004%、0.005%、0.006%或0.007%;或呈总蛋白含量的百分比形式的TSG101的水平为约0.001-0.01、0.002-0.006、0.003-0.005或0.004。

49.根据前述实施例中任一项所述的融合体组合物,其:

e)符合药物或良好生产规范(GMP)标准;

f)是根据良好生产规范(GMP)制成的;

g)具有低于预定参考值的病原体水平,例如基本上不含病原体;或

h)具有低于预定参考值的污染物水平,例如基本上不含污染物。

50.根据前述实施例中任一项所述的融合体组合物,其处于低于4、0、-4、-10、-12、-16、-20、-80或-160℃的温度下。

51.一种药物组合物,其包含根据前述实施例中任一项所述的融合体组合物和药学上可接受的载体。

52.根据实施例51所述的药物组合物,其中货物包含治疗剂。

53.一种向向个体递送治疗剂的方法,其包含向个体施用根据实施例52所述的药物组合物,其中融合体组合物以使得治疗剂被递送的量和/或时间施用。

54.一种制造融合体组合物的方法,其包含:

a)提供根据实施例1至50中任一项所述的融合体组合物;和

b)将融合体配制成适合于向个体施用的药物组合物。

55.一种制造融合体组合物的方法,其包含:

a)提供根据实施例1至50中任一项所述的融合体组合物;和

b)分析多个融合体中的一个或多个以确定以下因素中的一个或多个的存在或水平:(i)免疫原性分子;(ii)病原体;或(iii)污染物;和

c)如果因素中的一个或多个低于参考值,则批准释放多个融合体或融合体组合物。

56.一种融合体组合物,其包含衍生自源细胞的多个融合体,且其中所述多个融合体包含:

(a)脂质双层,

(b)被脂质双层包围的内腔;

(c)外源或过表达的融合剂,其中融合剂安置于脂质双层中;和

(d)货物;

其中融合体不包含核;且

其中以下中的一个或多个(例如以下中的至少2、3、4或5个):

i)融合剂以至少1,000个拷贝的拷贝数存在;

ii)融合体以至少1,000个拷贝的拷贝数包含治疗剂;

iii)融合体包含脂质,其中CL、Cer、DAG、HexCer、LPA、LPC、LPE、LPG、LPI、LPS、PA、PC、PE、PG、PI、PS、CE、SM和TAG中的一个或多个在源细胞中的对应脂质水平的75%内;

iv)融合体包含与源细胞类似的蛋白质组学组成;

v)融合体能够进行信号转导,例如传输细胞外信号,例如回应于胰岛素的AKT磷酸化,或回应于胰岛素的葡萄糖(例如标记的葡萄糖,例如2-NBDG)摄取,例如比阴性对照(例如不存在胰岛素的另外类似的融合体)多至少10%;

vi)融合体在向例如小鼠的个体施用时靶向组织,例如肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳或眼睛,例如其中在24小时之后,施用的融合体群体中至少0.1%或10%的融合体存在于靶组织中;或

vii)源细胞选自嗜中性粒细胞、粒细胞、间充质干细胞、骨髓干细胞、诱导多能干细胞、胚胎干细胞、成髓细胞、成肌细胞、肝细胞或神经元,例如视网膜神经元细胞。

57.根据实施例56所述的融合体组合物,其包含病毒衣壳蛋白,或DNA整合多肽。

58.根据实施例56所述的融合体组合物,其中货物包含病毒基因组。

59.根据实施例56所述的融合体组合物,其能够将核酸递送至靶细胞,例如以稳定地修饰靶细胞的基因组,例如用于基因疗法。

本发明的其它特征、目标和优势将在

具体实施方式

和附图以及权利要求书中显而易见。

除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常所理解相同的含义。本文提及的所有公开案、专利申请、专利和其它参考文献都以全文引用的方式并入。举例来说,本文中,例如本文的任何表中提及的所有GenBank、Unigene和Entrez序列都以引用的方式并入。除非另外规定,否则本文中,包括本文的任何表中指定的序列登录号均指截至2017年5月8日的当前数据库条目。当一个基因或蛋白质引用多个序列登录号时,包涵所有的序列变异体。另外,材料、方法和实例仅仅是说明性的并且不打算是限制性的。

附图说明

当结合附图阅读时将更好地理解本发明的以下详细描述。出于说明本发明的目的,在本文所述的图式中示出了某些实施例,其为当前示例的。然而,应理解,本发明不限于图式中示出的实施例的精确布置和仪器。

图1定量了对于内质网,用染料对融合体的染色。

图2定量了对于线粒体,用染料对融合体的染色。

图3定量了对于溶酶体,用染料对融合体的染色。

图4定量了对于F-肌动蛋白,用染料对融合体的染色。

图5是示出在对与表达Cre和GFP的融合剂接触的细胞进行光漂白后,GFP荧光的恢复的图示。

图6是示出在与融合体或阴性对照接触后,表达RFP的靶细胞的百分比的图示。

图7是通过供体与受体HeLa细胞之间的融合的阳性细胞器递送的图像。以白色指示的细胞内区域指示供体与受体线粒体之间的重叠。灰色的细胞内区域指示供体与受体细胞器不重叠的区域。

图8是通过供体与受体HeLa细胞之间的融合的阳性细胞器递送的图像。以白色指示的细胞内区域指示供体与受体线粒体之间的重叠。灰色的细胞内区域指示供体与受体细胞器不重叠的区域。

图9示出来自注射了融合体的小鼠的指定组织的显微镜图像。白色指示代表RFP荧光细胞,指示将蛋白质货物体内递送至细胞。

图10是一系列图像,示出通过指定的施用途径将融合体成功地体内递送至鼠类组织,引起通过靶向细胞表达荧光素酶。

图11示出鼠类肌肉组织中的tdTomato荧光的显微镜图像,表明通过细胞生物物质将蛋白质货物递送至肌细胞。

图12是示出使用蛋白质增强的去核的VSV-G HeLa细胞将线粒体递送至受体HeLaRho0细胞中的图示。

图13是一系列图像,示出了巨质膜融合体的产生和分离。

图14A是示出RFP于HEK293T细胞中的表达的图示,所述细胞与带有Cre重组酶的融合体一起培育且通过挤压穿过具有不同尺寸的孔的膜而产生,如所指示。

图14B是一系列图,示出了亲本细胞和融合体的AF488的Eu:488阳性事件(左图)和中值荧光强度(MFI;右图)。

图14C是一系列图,示出了亲本细胞和融合体的AF647的Edu:647阳性事件和中值荧光强度。

图14D是示出在3、5和24小时的时间内,融合体和亲本细胞聚合酶肌动蛋白的能力的图示。

图15是示出具有脂质双层结构的融合体的电子显微图像。

图16是示出通过蛋白质印迹检测VSV-G表达的图式。“+对照”表示用VSV-G转染的293T细胞。“-对照”表示未转染的293T细胞。

图17A是示出亚微米融合体测量参数和设置的表。

图17B是示出超微米融合体测量参数和设置的表。

图17C是一系列图,示出了根据NTA和显微法所测量的融合体和亲本细胞的尺寸分布。

图17D是示出根据NTA和显微法所测量的融合体和亲本细胞的平均直径的表。

图18是示出根据NTA和显微法所测量的融合体和亲本细胞的尺寸分布统计的表。

图19是示出融合体和亲本细胞的平均尺寸和体积的表。

图20A-20C是示出检测融合体中的细胞器的一系列图。(a)内质网;(b)线粒体;(c)溶酶体。

图21是一系列图,示出了对于融合体或细胞制剂观察到的可溶物:不溶物比。

图22是一系列图,示出了MvH(CD8)+F融合体与靶细胞或非靶细胞的融合和靶向融合的绝对量。

图23是示出用融合体处理的PC3细胞中的hOx40L表达的图。

图24是示出VSV-G融合体中的2-NBDG平均荧光强度的图。

图25是示出VSV-G融合体的细胞溶质中的酯酶活性的图。

图26A-26B是一系列图,示出了萤火虫荧光素酶信号在注射了融合体的小鼠的组织中的持久性。(a)FVB小鼠的经融合体(右腿)治疗相对于经PBS(左腿)治疗的腹侧图像和发光信号。左侧为图像和发光信号的覆盖图,且右侧仅为发光信号。(b)融合体治疗的TA(黑色正方形)、PBS治疗的TA(空心圆圈)、小鼠背景(黑色六边形)和分期背景(空心六边形)的总通量信号;y刻度为log10刻度。融合体治疗的腿在治疗后1(p<0.0001)、6(p<0.01)和12(p<0.01)小时处具有显著更大的信号。

图27A-27B是一系列图,示出了通过生物发光成像在小鼠中检测到的由融合体递送的Cre重组酶。(a)IV融合体治疗的小鼠(1×和3×浓度)的暴露的肝脏和脾脏的腹侧图像和发光信号覆盖图。下部部分是单独的发光信号。(b)靶向融合体的脾脏和肝脏的总通量信号;y刻度为log10刻度。在治疗后72小时,用3×浓度的融合体治疗进行治疗的小鼠在脾脏中的信号显著大于背景(p=0.0004)。

图28A-28B是一系列图,示出了通过生物发光成像检测到的融合体对鼠类肝脏和脾脏的Cre重组酶。(a)从左到右;在安乐死的5分钟内收集和成像的切除的肝脏、心脏、肺脏、肾脏、小肠、胰脏和脾脏的背侧图像和发光信号覆盖图。下部部分是单独的发光信号。(b)靶向融合体的脾脏和肝脏以及其它组织的总通量信号;y刻度为log10刻度。相比于具有最低信号的组织(心脏),用3×浓度的融合体治疗进行治疗的小鼠在脾脏中的信号明显更大(p<0.0001)。

图29是示出通过NivG+F融合体经由非内吞途径的Cre货物递送的表。

图30是一系列图像,示出了通过VSV-G融合体经由内吞途径的Cre货物递送。

图31是示出使用Syn1 HeLa细胞融合体将功能性线粒体递送至受体HeLa Rho0细胞的图示。

图32是一系列图像,示出了通过融合体将DNA体外递送至受体细胞。

图33是一系列图像,示出了通过融合体将mRNA体外递送至受体细胞。

图34A-34B是一系列图,示出了使用融合体将编码萤火虫荧光素酶的mRNA体内递送至小鼠组织中。(a)FVB小鼠的经融合体(右腿)治疗相对于经PBS(左腿)治疗的腹侧图像和发光信号。左侧为图像和发光信号的覆盖图,且右侧仅为发光信号。(b)融合体治疗的TA(黑色正方形)、PBS治疗的TA(空心圆圈)、小鼠背景(黑色六边形)和分期背景(空心六边形)的总通量信号;y刻度为log10刻度。融合体治疗的腿在治疗后1(p<0.0001)、6(p<0.01)和12(p<0.01)小时处具有显著更大的信号。

图35是一系列图像,示出了通过融合体将蛋白质体外递送至受体细胞。

图36A-36B是一系列图,示出了使用融合体将Cre重组酶蛋白体内递送至小鼠组织中。(a)从左到右;腹侧暴露的治疗的TA的发光信号和小鼠的图像,和单独的发光信号。(b)治疗相对于未治疗的腿、背景(小鼠胸部)和分期背景的总通量;y刻度为log10刻度。

图37是一系列图,示出了通过用超声处理装载的融合体将miRFP670 DNA递送至受体细胞。

图38是一系列图,示出了通过用超声处理装载的融合体将BSA-AF647蛋白递送至受体细胞。

图39是示出融合体影的尺寸分布和浓度的直方图。

图40是一系列图,示出了亲本细胞和融合体的AF647的Edu:647阳性事件和中值荧光强度。

图41是示出融合体和亲本细胞中通过二喹啉甲酸分析测量的GAPDH:总蛋白比的图。

图42是示出融合体和亲本细胞中通过二喹啉甲酸分析测量的脂质:蛋白质比的图。

图43是示出融合体和亲本细胞中通过二喹啉甲酸分析测量的蛋白质:DNA比的图。

图44是示出融合体和亲本细胞中通过二喹啉甲酸分析测量的脂质:DNA比的图。

图45是一系列图像,示出了在存在或不存在发动蛋白抑制剂Dynasore的情况下,通过VSV-G融合体向细胞中的Cre递送。

图46是示出外泌体和融合体中的外泌体标记CD63的蛋白质水平的图。

图47是示出融合体和亲本细胞中检测到的钙联蛋白信号的强度的图。

图48是示出针对融合体和亲本细胞的确定的脂质:DNA比的图。

图49A-49B是一系列图,示出了亲本细胞、外泌体和融合体中呈总脂质的百分比形式的脂质物质的比例。

图50是一系列图,示出了相对于与特定区室相关的蛋白质,亲本细胞、外泌体和融合体的蛋白质含量,如所指示。

图51是一系列图,示出了亲本细胞、外泌体和融合体中呈总蛋白含量的百分比形式的ARRDC1(左图)或TSG101(右图)的水平。

图52A-52B是一系列图,示出了将含有抑制蛋白域的蛋白1(ARRDC1)并入囊封Cre的融合体的生产中的影响。(a)在与融合体一起培育之后检测到的RFP阳性细胞的百分比,所述融合体在存在或不存在ARRDC1的情况下产生。(b)对于在存在或不存在ARRDC1的情况下产生的融合体,使用纳米粒子跟踪分析(fNTA)检测到的每毫升粒子数。

具体实施方式

本发明描述包含融合剂的天然衍生或工程化的双脂质膜。

定义

如本文所用,“细胞膜”是指衍生自细胞,例如源细胞或靶细胞的膜。

如本文所用,“线粒体”为从天然细胞或组织来源的线粒体网络衍生和分离或纯化的亚细胞装置。“线粒体制剂”具有生物活性(可与细胞或组织相互作用或对其起作用)和/或药物活性。

如本文所用,“细胞生物物质”是指包含内腔和细胞膜的细胞的一部分,或具有部分或完全核灭活的细胞。在一些实施例中,细胞生物物质包含细胞骨架组分、细胞器和核糖体中的一个或多个。在实施例中,细胞生物物质为去核细胞、微囊泡或细胞影。

如本文所用,“细胞溶质”是指细胞的细胞质的水性组分。细胞溶质可包含蛋白质、RNA、代谢物和离子。

如本文所用,“外源药剂”是指如下的药剂:i)不天然存在,如具有相对于内源蛋白改变(例如通过***、缺失或取代)的序列的蛋白质,或ii)不天然存在于其中安置有外源药剂的融合体的天然存在的源细胞中。

如本文所用,“融合”表示在两个膜封闭内腔之间产生相互作用,例如促进两个膜的融合或在两个内腔之间产生连接,例如孔。

如本文所用,“融合剂”是指在两个膜封闭内腔之间产生相互作用的药剂或分子。在实施例中,融合剂促进膜融合。在其它实施例中,融合剂在两个内腔(例如融合体与靶细胞的细胞质的内腔)之间产生连接,例如孔隙。在一些实施例中,融合剂包含两个或更多个蛋白质的复合物,例如其中任一蛋白质都不单独具有融合活性。在一些实施例中,融合剂包含靶向域。

如本文所用,“融合剂结合搭配物”是指与融合剂相互作用以促进两个膜之间的融合的药剂或分子。在一些实施例中,融合剂结合搭配物可为或包含细胞的表面特征。

如本文所用,“融合体”是指膜封闭制剂和与两亲性脂质双层相互作用的融合剂。

如本文所用,“融合体组合物”是指包含一个或多个融合体的组合物。

如本文所用,“膜封闭制剂”是指将货物封闭在内腔或空腔中的两亲性脂质双层。在一些实施例中,货物相对于内腔或空腔是外源的。在其它实施例中,货物相对于内腔或空腔是内源的,例如相对于源细胞是内源的。

如本文所用,“线粒体生物发生”表示增加线粒体的生物量的过程。线粒体生物发生包括增加细胞中线粒体的数目和/或大小。

如本文所用,术语“纯化的”意指从自然状态改变或去除。例如,天然存在于活体动物中的细胞或细胞片段不是“纯化的”,但从其自然状态的共存材料部分或完全分离的相同细胞或细胞片段是“纯化的”。纯化的融合体组合物可以基本上纯的形式存在,或可存在于非天然环境,例如培养基,如包含细胞的培养基中。

如本文所用,“重靶向融合剂”是指包含靶向部分的融合剂,所述靶向部分具有不是融合剂的天然存在形式的一部分的序列。在实施例中,融合剂包含相对于融合剂的天然存在形式中的靶向部分不同的靶向部分。在实施例中,融合剂的天然存在形式缺少靶向域,且重靶向融合剂包含融合剂的天然存在形式中不存在的靶向部分。在实施例中,融合剂经修饰以包含靶向部分。在实施例中,相对于融合剂的天然存在形式,融合剂包含在靶向部分之外的一个或多个序列改变,例如在跨膜域、融合活性域或细胞质域中。

如本文所用,“源细胞”(与“亲本细胞”可互换使用)是指衍生融合体的细胞。

融合体

在一些方面,本文所述的融合体组合物和方法包含膜封闭制剂,例如天然衍生或工程化的脂质膜,其包含融合剂。在一些方面,本公开提供非植物细胞,例如哺乳动物细胞的一部分或其衍生物(例如线粒体(mitochondrion)、线粒体(chondrisome)、细胞器、囊泡或去核细胞),其包含融合剂,例如蛋白质、脂质和化学融合剂。

囊封

在本文所述的组合物和方法的一些实施例中包括融合体,例如具有融合剂的天然衍生或工程化的两亲性脂质双层。此类组合物可出人意料地用于本发明的方法中。在一些情况下,膜可采取自体、同种异体、异种或工程化细胞的形式,如Ahmad等人2014Miro1调节细胞间线粒体运输并增强间充质干细胞救援功效(Miro1 regulates intercellularmitochondrial transport&enhances mesenchymal stem cell rescue efficacy).《欧洲分子生物学学会杂志(EMBO Journal.)》33(9):994-1010中所述。在一些实施例中,组合物包括工程化的膜,如例如Orive等人2015.细胞囊封:技术和临床进展(Cellencapsulation:technical and clinical advances.)《药理学发展趋势(Trends inPharmacology Sciences)》;36(8):537-46;和Mishra 2016.《囊封和控制释放手册(Handbook of Encapsulation and Controlled Release.)》CRC Press中所述。在一些实施例中,组合物包括天然存在的膜(McBride等人2012.囊泡传输途径将货物从线粒体穿梭运送至溶酶体(A Vesicular Transport Pathway Shuttles Cargo from mitochondriato lysosomes.)《现代生物学(Current Biology)》22:135-141)。

在一些实施例中,本文所述的组合物包括天然衍生的膜,例如由细胞或组织制备的膜囊泡。在一个实施例中,融合体为来自MSC或星形胶质细胞的囊泡。

在一个实施例中,融合体为外泌体。

示例性外泌体和其它膜封闭体描述于例如US2016137716中,其以全文引用的方式并入本文中。在一些实施例中,融合体包含例如可获自细胞的囊泡,例如微囊泡、外泌体、细胞凋亡体(来自凋亡细胞)、微粒(其可衍生自例如血小板)、核外粒体(可衍生自例如血清中的嗜中性粒细胞和单核细胞)、***体(可获自***癌细胞)、心脏体(可衍生自心肌细胞)等。

示例性外泌体和其它膜封闭体还描述于WO/2017/161010、WO/2016/077639、US20160168572、US20150290343和US20070298118中,其各自以全文引用的方式并入本文中。在一些实施例中,融合体包含细胞外囊泡、纳米囊泡或外泌体。在实施例中,融合体包含细胞外囊泡,例如细胞衍生的囊泡,其包含封闭内部空间的膜且具有比衍生其的细胞更小的直径。在实施例中,细胞外囊泡的直径为20nm至1000nm。在实施例中,融合体包含细胞凋亡体、细胞片段、通过直接或间接操纵衍生自细胞的囊泡、小泡状细胞器和由活细胞产生的囊泡(例如通过具有质膜的晚期内体的直接质膜出芽或融合)。在实施例中,细胞外囊泡衍生自活的或死的生物体、外植的组织或器官或培养的细胞。在实施例中,融合体包含纳米囊泡,例如细胞衍生的小(例如直径在20-250nm之间,或直径在30-150nm之间)囊泡,所述囊泡包含封闭内部空间的膜,且通过直接或间接操纵由所述细胞产生。在一些情况下,纳米囊泡的产生可导致源细胞的破坏。纳米囊泡可包含脂质或脂肪酸和多肽。在实施例中,融合体包含外泌体。在实施例中,外泌体为细胞衍生的小(例如直径在20-300nm之间,或直径在40-200nm之间)囊泡,所述囊泡包含封闭内部空间的膜,且通过直接质膜出芽或通过晚期内体与质膜的融合由所述细胞产生。在实施例中,外泌体的产生不会导致源细胞的破坏。在实施例中,外泌体包含脂质或脂肪酸和多肽。

示例性外泌体和其它膜封闭体还描述于US 20160354313中,其以全文引用的方式并入本文中。在实施例中,融合体包含生物相容性递送模块、外泌体(例如直径为约30nm至约200nm)、微囊泡(例如直径为约100nm至约2000nm)、细胞凋亡体(例如直径为约300nm至约2000nm)、膜粒子、膜囊泡、外泌体样囊泡、核外粒体样囊泡、核外粒体或外型囊泡。

在一个实施例中,融合体为微囊泡。在一些实施例中,微囊泡为直径在约10-10,000nm之间的亚细胞或细胞外囊泡。在一些实施例中,微囊泡从细胞天然释放,且在一些实施例中,细胞经处理以增强囊泡形成。在一个实施例中,融合体为外泌体。在一些情况下,外泌体的直径在约30-100nm之间。在一些实施例中,外泌体由多囊体产生。在一些实施例中,细胞经处理以增强外泌体形成。在一个实施例中,融合体为细胞影。在一个实施例中,囊泡为质膜囊泡,例如巨质膜囊泡。

融合体可由若干不同类型的脂质,例如两亲性脂质,如磷脂制成。融合体可包含脂质双层作为最外表面。此双层可由一个或多个相同或不同类型的脂质构成。实例包括但不限于磷脂,如磷酸胆碱和肌醇磷脂。特定实例包括但不限于DMPC、DOPC和DSPC。

融合体可主要由天然磷脂和脂质,如1,2-二硬脂酰基-sn-甘油-3-磷脂酰胆碱(DSPC)、鞘磷脂、卵磷脂酰胆碱和单唾液酸神经节苷脂构成。在实施例中,融合体仅包含磷脂且在血浆中较不稳定。然而,在实施例中,用胆固醇操纵脂膜可增加稳定性且减少囊封的生物活性化合物向血浆中的快速释放。在一些实施例中,融合体包含1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE),例如以增加稳定性(关于综述,参见例如Spuch和Navarro,《药物递送杂志(Journal of Drug Delivery)》,第2011卷,文章编号469679,第12页,2011.doi:10.1155/2011/469679)。

在一些实施例中,融合体包含或富集影响膜曲率的脂质(参见例如Thiam等人,《自然综述分子细胞生物学(Nature Reviews Molecular Cell Biology)》,14(12):775-785,2013)。一些脂质具有小的亲水性头基和大的疏水性尾,其通过集中于局部区域而促进融合孔的形成。在一些实施例中,融合体包含或富集负曲率脂质,如胆固醇、磷脂酰乙醇胺(PE)、甘油二酯(DAG)、磷脂酸(PA)、脂肪酸(FA)。在一些实施例中,融合体不包含、耗尽或具有少量正曲率脂质,如溶血磷脂酰胆碱(LPC)、磷脂酰肌醇(Ptdlns)、溶血磷脂酸(LPA)、溶血磷脂酰乙醇胺(LPE)、单酰基甘油(MAG)。

在一些实施例中,将脂质添加至融合体。在一些实施例中,将脂质添加至培养的源细胞,所述源细胞在形成融合体之前或期间将脂质并入至其膜中。在一些实施例中,将脂质以脂质体的形式添加至细胞或融合体。在一些实施例中甲基-β环糊精(mβ-CD)用于富集或耗尽脂质(参见例如Kainu等人,《脂质研究杂志(Journal of Lipid Research)》,51(12):3533-3541,2010)。

融合体可包含但不限于单独的DOPE(二油酰基磷脂酰乙醇胺)、DOTMA、DOTAP、DOTIM、DDAB,或与胆固醇一起产生DOPE和胆固醇、DOTMA和胆固醇、DOTAP和胆固醇、DOTIM和胆固醇以及DDAB和胆固醇。制备多层囊泡脂质的方法为本领域中已知的(参见例如美国专利第6,693,086号,其关于多层囊泡脂质制备的教示内容以引用的方式并入本文中)。尽管当脂质膜与水溶液混合时,融合体的形成可以是自发的,但其也可以通过使用均质机、超声发生器或挤压设备施加呈震动形式的力来加速(关于综述,参见例如Spuch和Navarro,《药物递送杂志》,第2011卷,文章编号469679,第12页,2011.doi:10.1155/2011/469679)。可通过挤压通过具有减小尺寸的过滤器来制备挤压脂质,如Templeton等人,《自然生物技术(Nature Biotech)》15:647-652,1997中所述,其关于挤压脂质制备的教示内容以引用的方式并入本文中。

在另一实施例中,脂质可用于形成融合体。脂质,包括但不限于DLin-KC2-DMA4、C12-200和共脂质二硬脂酰磷脂酰胆碱、胆固醇和PEG-DMG可使用自发囊泡形成程序配制(参见例如Novobrantseva,《分子疗法-核酸(Molecular Therapy-Nucleic Acids)》(2012)1,e4;doi:10.1038/mtna.2011.3)。Tekmira公开案描述脂质囊泡和脂质囊泡制剂的各个方面(参见例如美国专利第7,982,027号;第7,799,565号;第8,058,069号;第8,283,333号;第7,901,708号;第7,745,651号;第7,803,397号;第8,101,741号;第8,188,263号;第7,915,399号;第8,236,943号和第7,838,658号,以及欧洲专利第1766035号;第1519714号;第1781593号和第1664316号),其全部以引用的方式并入本文中且可用于和/或适用于本发明。

在一些实施例中,本文所述的融合体可包括一种或多种聚合物。聚合物可以是可生物降解的。可使用本领域中已知的方法来合成可生物降解的聚合物囊泡。用于合成聚合物囊泡的示例性方法由Bershteyn等人,《软物质(Soft Matter)》4:1787-1787,2008和US2008/0014144 A1描述,其关于微粒合成的特定教示内容以引用的方式并入本文中。

可使用的示例性合成聚合物包括但不限于脂族聚酯、聚乙二醇(PEG)、聚(乳酸)(PLA)、聚(乙醇酸)(PGA)、乳酸和乙醇酸的共聚物(PLGA)、聚己内酯(PCL)、聚酸酐、聚(原酸)酯、聚氨基甲酸酯、聚(丁酸)、聚(戊酸)和聚(丙交酯-共-己内酯),和天然聚合物,如白蛋白、海藻酸盐和其它多糖,包括聚葡萄糖和纤维素、胶原蛋白、其化学衍生物,包括取代、添加化学基团(如烷基、亚烷基)、羟基化、氧化和本领域的技术人员常规进行的其它修饰)、白蛋白和其它亲水蛋白、玉米蛋白和其它醇溶蛋白和疏水蛋白、其共聚物和混合物。一般来说,这些材料在体内通过酶水解或暴露于水、通过表面或整体侵蚀而降解。

融合剂

在一些实施例中,本文所述的融合体(例如包含囊泡或细胞的一部分)包括一种或多种融合剂,例如以便于融合体融合至膜,例如细胞膜。另外,这些组合物可包括在合成期间或之后进行的表面修饰,以包括一种或多种融合剂,例如可与靶细胞互补的融合剂。表面修饰可包含对膜的修饰,例如将脂质或蛋白质***至膜中。

在一些实施例中,融合体在其外表面上包含一种或多种融合剂(例如整合至细胞膜中)以靶向特定细胞或组织类型(例如心肌细胞)。融合剂包括但不限于基于蛋白质、基于脂质和基于化学物质的融合剂。融合剂可结合靶细胞表面上的搭配物。在一些实施例中,包含融合剂的融合体会将膜整合至靶细胞的脂质双层中。

在一些实施例中,本文所述的融合剂中的一种或多种可包括于融合体中。

蛋白质融合剂

在一些实施例中,融合剂为蛋白质融合剂,例如哺乳动物蛋白或哺乳动物蛋白的同源物(例如具有50%、60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或更大一致性);非哺乳动物蛋白,如病毒蛋白或病毒蛋白的同源物(例如具有50%、60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或更大一致性);天然蛋白或天然蛋白的衍生物;合成蛋白;其片段;其变异体;包含一种或多种融合剂或片段的蛋白质融合物,和其任何组合。

在一些实施例中,融合剂引起融合体中的脂质与靶细胞中的脂质之间的混合。在一些实施例中,融合剂使得在融合体的内腔与靶细胞的细胞溶质之间形成一个或多个孔,例如融合体为或包含如本文所述的连接蛋白。

哺乳动物蛋白

在一些实施例中,融合剂可包括哺乳动物蛋白,参见表1。哺乳动物融合剂的实例可包括但不限于SNARE家族蛋白,如vSNAREs和tSNAREs;合胞素蛋白,如Syncytin-1(DOI:10.1128/JVI.76.13.6442-6452.2002)和Syncytin-2;myomaker(biorxiv.org/content/early/2017/04/02/123158,doi.org/10.1101/123158,doi:10.1096/fj.201600945R,doi:10.1038/nature12343)、myomixer(www.nature.com/nature/journal/v499/n7458/full/nature12343.html,doi:10.1038/nature12343)、myomerger(science.sciencemag.org/content/early/2017/04/05/science.aam9361,DOI:10.1126/science.aam9361);FGFRL1(成纤维细胞生长因子受体样1)、Minion(doi.org/10.1101/122697);甘油醛-3-磷酸脱氢酶(GAPDH)的同种型(例如如US 6,099,857A中所公开);间隙连接蛋白,如连接蛋白43、连接蛋白40、连接蛋白45、连接蛋白32或连接蛋白37(例如如US 2007/0224176中所公开;Hap2;能够诱导异源细胞之间的合胞体形成的任何蛋白质(参见表2);具有融合剂特性的任何蛋白质(参见表3);其同源物;其片段;其变异体;和包含一种或多种蛋白质或其片段的蛋白质融合物。在一些实施例中,融合剂由在人类基因组中发现的人类内源反转录病毒元件(hERV)编码。另外的示例性融合剂公开于US 6,099,857A和US 2007/0224176中,其全部内容以引用的方式并入本文中。

表1:人类和非人类融合剂的非限制性实例。

表2:编码具有融合剂特性的蛋白质的基因。

Figure BDA0002356542560000872

表3:人类融合剂候选物

Figure BDA0002356542560000882

在一些实施例中,融合体包含产生曲率的蛋白质,例如Epsin1、发动蛋白或包含BAR域的蛋白质。参见例如Kozlov等人,《结构生物学评论(CurrOp StrucBio)》2015,Zimmerberg等人《自然评论(Nat Rev)》2006,Richard等人,《生物化学杂志(Biochem J)》2011。

非哺乳动物蛋白

病毒蛋白

在一些实施例中,融合剂可包括非哺乳动物蛋白,例如病毒蛋白。在一些实施例中,病毒融合剂为I类病毒膜融合蛋白、II类病毒膜蛋白、III类病毒膜融合蛋白、病毒膜糖蛋白或其它病毒融合蛋白,或其同源物、其片段、其变异体或包含一种或多种蛋白质或其片段的蛋白质融合物。

在一些实施例中,I类病毒膜融合蛋白包括但不限于杆状病毒F蛋白,例如核型多角体病毒(NPV)属的F蛋白,例如甜菜夜蛾(Spodoptera exigua)MNPV(SeMNPV)F蛋白和舞毒蛾(Lymantria dispar)MNPV(LdMNPV),以及副粘病毒F蛋白。

在一些实施例中,II类病毒膜蛋白包括但不限于蜱骨脑炎E(TBEV E)、胜利基森林病毒(Semliki Forest Virus)E1/E2。

在一些实施例中,III类病毒膜融合蛋白包括但不限于弹状病毒G(例如水泡性口炎病毒的融合蛋白G(VSV-G))、疱疹病毒糖蛋白B(例如单纯疱疹病毒1(HSV-1)gB))、埃-巴二氏病毒(Epstein Barr Virus)糖蛋白B(EBV gB)、索戈托病毒(thogotovirus)G、杆状病毒gp64(例如苜蓿银纹夜蛾(Autographa California)多重NPV(AcMNPV)gp64)和博纳病(Borna disease)病毒(BDV)糖蛋白(BDV G)。

其它病毒融合剂的实例,例如膜糖蛋白和病毒融合蛋白包括但不限于:病毒合胞体蛋白,如流感病毒血凝素(HA)或突变体,或其融合蛋白;1型人类免疫缺陷病毒包膜蛋白(HIV-1ENV)、来自HIV结合LFA-1以形成淋巴细胞合胞体的gp120、HIV gp41、HIV gp160或HIV反式转录激活因子(TAT);病毒糖蛋白VSV-G、来自弹状病毒科的水泡性口炎病毒的病毒糖蛋白;水痘-带状疱疹病毒(VZV)的糖蛋白gB和gH-gL;鼠类白血病病毒(MLV)-10A1;长臂猿白血病病毒糖蛋白(GaLV);狂犬病、莫科拉(Mokola)、水泡性口炎病毒和披膜病毒中的G型糖蛋白;鼠类肝炎病毒JHM表面突出蛋白;猪呼吸道冠状病毒纤突和膜糖蛋白;禽类传染性支气管炎纤突糖蛋白和其前体;牛肠道冠状病毒纤突蛋白;麻疹病毒的F和H、HN或G基因;犬瘟热病毒、新城疫病毒、人副流感病毒3、猿猴病毒41、仙台病毒和人类呼吸道合胞病毒;人类疱疹病毒1和猴水痘病毒的gH,具有伴随蛋白gL;人、牛和猕猴疱疹病毒gB;弗云德鼠(Friend murine)白血病病毒和梅森-菲舍猴(Mason Pfizer monkey)病毒的包膜糖蛋白;流行性腮腺炎病毒血凝素神经氨酸酶和糖蛋白F1和F2;来自委内瑞拉马脑脊髓炎的膜糖蛋白;副粘病毒F蛋白;SIV gp160蛋白;埃博拉病毒(Ebola virus)G蛋白;或仙台病毒融合蛋白,或其同源物、其片段、其变异体,和包含一种或多种蛋白质或其片段的蛋白质融合物。

非哺乳动物融合剂包括病毒融合剂、其同源物、其片段和包含一种或多种蛋白质或其片段的融合蛋白。病毒融合剂包括I类融合剂、II类融合剂、III类融合剂和IV类融合剂。在实施例中,I类融合剂,如人类免疫缺陷病毒(HIV)gp41具有特征性的融合后构象,其具有中心卷曲螺旋结构的α-螺旋发夹的特征性三聚体。I类病毒融合蛋白包括具有中心融合后六螺旋束的蛋白。I类病毒融合蛋白包括流感HA、副流感F、HIV Env、埃博拉GP、来自正粘病毒的血凝素、来自副粘病毒的F蛋白(例如麻疹(Katoh等人《BMC生物技术(BMCBiotechnology)》2010,10:37))、来自逆转录病毒的ENV蛋白,以及丝状病毒和冠状病毒的融合剂。在实施例中,II类病毒融合剂,如登革热E糖蛋白具有形成延长的胞外域的β-折叠的结构特征,所述胞外域再折叠以产生发夹的三聚体。在实施例中,II类病毒融合剂缺乏中心卷曲螺旋。II类病毒融合剂可发现于甲病毒(例如E1蛋白)和黄病毒(例如E糖蛋白)中。II类病毒融合剂包括来自胜利基森林病毒、辛比斯(Sinbis)、风疹病毒和登革病毒的融合剂。在实施例中,III类病毒融合剂,如水泡性口炎病毒G糖蛋白组合I类和II类中发现的结构特征。在实施例中,III类病毒融合剂包含α螺旋(例如与I类病毒融合剂一样形成六螺旋束以折叠蛋白质),和在其末端具有两亲性融合肽的β折叠,使人联想到II类病毒融合剂。III类病毒融合剂可发现于弹状病毒和疱疹病毒中。在实施例中,IV类病毒融合剂为融合相关的小跨膜(FAST)蛋白(doi:10.1038/sj.emboj.7600767,Nesbitt,Rae L.,“使用以多功能FAST蛋白配制的脂质体的靶向细胞内治疗性递送(Targeted Intracellular TherapeuticDelivery Using Liposomes Formulated with Multifunctional FAST proteins)”(2012).电子论文和学位论文库(Electronic Thesis and Dissertation Repository.)论文388),其由非包膜呼肠孤病毒编码。在实施例中,IV类病毒融合剂足够小以致其不形成发夹(doi:10.1146/annurev-cellbio-101512-122422,doi:10.1016/j.devcel.2007.12.008)。

在一些实施例中,融合剂为副粘病毒融合剂。在一些实施例中,融合剂为尼帕病毒蛋白F、麻疹病毒F蛋白、图帕伊阿副粘病毒F蛋白、副粘病毒F蛋白、亨德拉病毒F蛋白、亨尼帕病毒F蛋白、麻疹病毒F蛋白、呼吸道病毒F蛋白、仙台病毒F蛋白、腮腺炎病毒F蛋白或禽腮腺炎病毒F蛋白。

在一些实施例中,融合剂为痘病毒科融合剂。

另外的示例性融合剂公开于US 9,695,446、US 2004/0028687、US 6,416,997、US7,329,807、US 2017/0112773、US 2009/0202622、WO 2006/027202和US 2004/0009604中,其全部内容以引用的方式并入本文中。

其它蛋白质

在一些实施例中,融合剂可包括pH依赖性(例如在缺血性损伤的情况下)蛋白、其同源物、其片段和包含一种或多种蛋白质或其片段的蛋白质融合物。融合剂可介导细胞表面处或在内体中或另一细胞膜结合空间中的膜融合。

在一些实施例中,融合剂包括EFF-1、AFF-1、间隙连接蛋白质,例如连接蛋白(如Cn43、GAP43、CX43)(DOI:10.1021/jacs.6b05191)、其它肿瘤连接蛋白、其同源物、其片段、其变异体和包含一种或多种蛋白质或其片段的蛋白质融合物。

对蛋白质融合剂的修饰

蛋白质融合剂可通过使融合蛋白或靶向蛋白(例如血凝素蛋白)中的氨基酸残基突变而重靶向。在一些实施例中,融合剂经随机突变。在一些实施例中,融合剂经合理突变。在一些实施例中,融合剂经历定向进化。在一些实施例中,融合剂被截短且仅将肽的亚群用于融合体。例如,麻疹血凝素蛋白中的氨基酸残基可被突变以改变蛋白质的结合特性,从而重定向融合(doi:10.1038/nbt942,《分子疗法(Molecular Therapy)》第16卷第8期,1427-1436 2008年8月,doi:10.1038/nbt1060,DOI:10.1128/JVI.76.7.3558-3563.2002,DOI:10.1128/JVI.75.17.8016-8020.2001,doi:10.1073pnas.0604993103)。

蛋白质融合剂可通过将靶向部分结合至融合蛋白或靶向蛋白(例如血凝素蛋白)而重靶向。在一些实施例中,融合剂和靶向部分通过表达包含连接至靶向部分的融合剂的嵌合蛋白而共价结合。靶标包括靶细胞上显示的任何肽(例如受体)。在一些实例中,靶向在靶细胞上的表达水平高于非靶细胞。例如,单链可变片段(scFv)可与缀融合剂合,以将融合活性重定向至显示scFv结合靶标的细胞(doi:10.1038/nbt1060,DOI 10.1182/blood-2012-11-468579,doi:10.1038/nmeth.1514,doi:10.1006/mthe.2002.0550,人类基因疗法(HUMAN GENE THERAPY)11:817-826,doi:10.1038/nbt942,doi:10.1371/journal.pone.0026381,DOI 10.1186/s12896-015-0142-z)。例如,设计的锚蛋白重复蛋白(DARPin)可与融合剂结合,以将融合活性重定向至显示DARPin结合靶标(doi:10.1038/mt.2013.16,doi:10.1038/mt.2010.298,doi:10.4049/jimmunol.1500956),以及不同DARPin的组合(doi:10.1038/mto.2016.3)的细胞。例如,受体配体和抗原可与融合剂结合,以将融合活性重定向至显示靶受体的细胞(DOI:10.1089/hgtb.2012.054,DOI:10.1128/JVI.76.7.3558-3563.2002)。靶向蛋白质还可包括例如抗体或其抗原结合片段(例如Fab、Fab'、F(ab')2、Fv片段、ScFv抗体片段、二硫键连接的Fv(sdFv)、由VH和CH1域组成的Fd片段、线性抗体、单域抗体(如sdAb(VL或VH))、纳米抗体或骆驼VHH域)、抗原结合III型纤连蛋白(Fn3)骨架(如纤连蛋白多肽微型抗体)、配体、细胞因子、趋化因子或T细胞受体(TCR)。蛋白质融合剂可通过将靶向部分非共价结合至融合蛋白或靶向蛋白(例如血凝素蛋白)而重靶向。例如,融合蛋白可被工程化以结合靶向靶细胞上的抗原的抗体的Fc区,从而将融合活性重定向至显示抗体靶标的细胞(DOI:10.1128/JVI.75.17.8016-8020.2001,doi:10.1038/nm1192)。改变和未改变的融合剂可显示于相同融合体上(doi:10.1016/j.biomaterials.2014.01.051)。

靶向部分可包含例如人类化抗体分子、完整IgA、IgG、IgE或IgM抗体;双特异性或多特异性抗体(例如

Figure BDA0002356542560000931

等);抗体片段,如Fab片段、Fab'片段、F(ab')2片段、Fd'片段、Fd片段和分离的CDR或其组;单链Fv;多肽-Fc融合物;单域抗体(例如鲨鱼单域抗体,如IgNAR或其片段);骆驼抗体;遮蔽的抗体(例如

Figure BDA0002356542560000932

);小型模块化免疫药物(“SMIPsTM”);单链或串联双功能抗体

Figure BDA0002356542560000933

VHH;

Figure BDA0002356542560000934

微型抗体;

Figure BDA0002356542560000935

s;锚蛋白重复蛋白或

Figure BDA0002356542560000936

DART;TCR样抗体;

Figure BDA0002356542560000938

MicroProteins;

Figure BDA00023565425600009311

s。

在实施例中,重靶向融合剂结合靶细胞上的细胞表面标记,例如蛋白质、糖蛋白、受体、细胞表面配体、激动剂、脂质、糖、I类跨膜蛋白、II类跨膜蛋白或III类跨膜蛋白。

融合体可显示未与蛋白质融合剂结合的靶向部分,以将融合活性重定向至与靶向部分结合的细胞,或影响融合体归巢。

添加至融合体的靶向部分可经调节以具有不同结合强度。例如,具有各种结合强度的scFv和抗体可用于改变融合体针对显示高量或低量的靶抗原的细胞的融合活性(doi:10.1128/JVI.01415-07,doi:10.1038/cgt.2014.25,DOI:10.1002/jgm.1151)。例如,具有不同亲和力的DARPin可用于改变融合体针对显示高量或低量的靶抗原的细胞的融合活性(doi:10.1038/mt.2010.298)。靶向部分还可被调节以靶向靶配体上的不同区域,这将影响与显示靶标的细胞的融合率(doi:10.1093/protein/gzv005)。

在一些实施例中,蛋白质融合剂可被改变以降低免疫反应性。例如,蛋白质融合剂可用降低免疫相互作用的分子,如PEG修饰(DOI:10.1128/JVI.78.2.912-921.2004)。因此,在一些实施例中,融合剂包含PEG,例如为PEG化的多肽。由免疫系统靶向的融合剂中的氨基酸残基可被改变以无法被免疫系统识别(doi:10.1016/j.virol.2014.01.027,doi:10.1371/journal.pone.0046667)。在一些实施例中,融合剂的蛋白质序列被改变以类似于人体中发现的氨基酸序列(人类化)。在一些实施例中,融合剂的蛋白质序列被改变为结合MHC复合物的强度较弱的蛋白质序列。在一些实施例中,蛋白质融合剂衍生自不感染人类(且人类尚未针对其进行疫苗接种)的病毒或生物体,从而增加患者的免疫系统未经蛋白质融合剂治疗的可能性(例如存在可忽略的体液或细胞介导的针对融合剂的适应性免疫反应)(doi:10.1006/mthe.2002.0550,doi:10.1371/journal.ppat.1005641,doi:10.1038/gt.2011.209,DOI10.1182/blood-2014-02-558163)。在一些实施例中,可改变融合剂的糖基化以改变免疫相互作用或降低免疫反应性。不希望受理论所束缚,在一些实施例中,衍生自不感染人类的病毒或生物体的蛋白质融合剂在患者中不具有天然融合靶标,且因此具有高特异性。

脂质融合剂

在一些实施例中,可用融合脂质,如饱和脂肪酸来处理融合体。在一些实施例中,饱和脂肪酸具有10-14个碳。在一些实施例中,饱和脂肪酸具有更长链的羧酸。在一些实施例中,饱和脂肪酸为单酯。

在一些实施例中,融合体可用不饱和脂肪酸处理。在一些实施例中,不饱和脂肪酸具有C16与C18之间的不饱和脂肪酸。在一些实施例中,不饱和脂肪酸包括油酸、单油酸甘油酯、甘油酯、二酰甘油、改性不饱和脂肪酸和其任何组合。

不希望受理论所束缚,在一些实施例中,负曲率脂质促进膜融合。在一些实施例中,融合体在膜中包含一种或多种负曲率脂质,例如外源负曲率脂质。在实施例中,将负曲率脂质或其前体添加至包含源细胞或融合体的培养基。在实施例中,源细胞被工程化以表达或过表达一种或多种脂质合成基因。负曲率脂质可例如为二酰甘油(DAG)、胆固醇、磷脂酸(PA)、磷脂酰乙醇胺(PE)或脂肪酸(FA)。

不希望受理论所束缚,在一些实施例中,正曲率脂质抑制膜融合。在一些实施例中,融合体在膜中包含降低水平的一种或多种正曲率脂质,例如外源正曲率脂质。在实施例中,通过抑制脂质合成,例如通过源细胞中的脂质合成基因的基因敲除或基因敲落来降低水平。正曲率脂质可例如为溶血磷脂酰胆碱(LPC)、磷脂酰肌醇(PtdIns)、溶血磷脂酸(LPA)、溶血磷脂酰乙醇胺(LPE)或单酰基甘油(MAG)。

化学融合剂

在一些实施例中,融合体可用融合化学物质处理。在一些实施例中,融合化学物质为聚乙二醇(PEG)或其衍生物。

在一些实施例中,化学融合剂诱导两个膜之间的局部脱水,导致双层的不利分子堆积。在一些实施例中,化学融合剂诱导脂质双层附近区域的脱水,引起细胞之间的水分子移位并允许两个膜之间的共同相互作用。

在一些实施例中,化学融合剂为正阳离子。正阳离子的一些非限制性实例包括Ca2+、Mg2+、Mn2+、Zn2+、La3+、Sr3+和H+。

在一些实施例中,化学融合剂通过改变表面极性而结合至靶膜,这改变了水合依赖性膜间排斥。

在一些实施例中,化学融合剂为可溶的脂溶性物质。一些非限制性实例包括油酰甘油、二油酰甘油、三油酰甘油以及其变异体和衍生物。

在一些实施例中,化学融合剂为水溶性化学物质。一些非限制性实例包括聚乙二醇、二甲基亚砜以及其变异体和衍生物。

在一些实施例中,化学融合剂为小有机分子。非限制性实例包括正己基溴。

在一些实施例中,化学融合剂不改变融合剂或靶膜的构成、细胞活力或离子迁移特性。

在一些实施例中,化学融合剂为激素或维生素。一些非限制性实例包括脱落酸、视黄醇(维生素A1)、生育酚(维生素E)以及其变异体和衍生物。

在一些实施例中,融合体包含肌动蛋白和使聚合的肌动蛋白稳定的药剂。不希望受理论所束缚,融合体中的稳定的肌动蛋白可促进与靶细胞的融合。在实施例中,使聚合的肌动蛋白稳定的药剂选自肌动蛋白、肌球蛋白、生物素-抗生蛋白链菌素、ATP、神经元韦斯考特-奥德里奇综合症(Wiskott-Aldrich syndrome)蛋白(N-WASP)或形成蛋白。参见例如Langmuir.2011年8月16日;27(16):10061-71和Wen等人,《自然通讯(Nat Commun.)》2016年8月31日;7。在实施例中,融合体包含外源肌动蛋白,例如野生型肌动蛋白或包含促进聚合的突变的肌动蛋白。在实施例中,融合体包含ATP或磷酸肌酸,例如外源ATP或磷酸肌酸。

小分子融合剂

在一些实施例中,融合体可用融合小分子处理。一些非限制性实例包括氟烷、非类固醇消炎药(NSAID),如美洛昔康、吡罗昔康、替诺昔康和氯丙嗪。

在一些实施例中,小分子融合剂可以胶束状聚集体存在或不含聚集体。

融合剂修饰

在一些实施例中,融合剂连接至可裂解蛋白质。在某些情况下,可裂解蛋白质可通过暴露于蛋白酶而被裂解。工程化融合蛋白可结合跨膜蛋白的任何域。工程化融合蛋白可通过裂解肽与位于膜间空间内的蛋白质域连接。裂解肽可通过一种膜间蛋白酶或膜间蛋白酶的组合(例如HTRA2/OMI,其在位置P1处需要非极性脂族氨基酸,缬氨酸、异亮氨酸或甲硫氨酸是优选的,且在P2和P3位置处需要亲水性残基,精氨酸是优选的)裂解。

在一些实施例中,融合剂连接至亲和标签。在一些实施例中,亲和标签有助于融合体分离和隔离。在一些实施例中,亲和标签为可裂解的。在一些实施例中,亲和标签非共价连接至融合剂。在一些实施例中,亲和标签存在于融合体上且与融合剂分离。

在一些实施例中,融合剂蛋白通过本领域已知的任何方法或本文所述的任何方法工程化以包含蛋白水解降解序列,例如线粒体或胞质降解序列。融合剂蛋白可被工程化以包括但不限于蛋白水解降解序列,例如凋亡蛋白酶2蛋白质序列(例如Val-Asp-Val-Ala-Asp-|-)或其它蛋白水解序列(参见例如Gasteiger等人,《蛋白质组学协议手册(TheProteomics Protocols Handbook)》;2005:571-607)、与野生型蛋白水解降解序列具有至少75%、80%、85%、90%、95%或更大一致性的修饰的蛋白水解降解序列、胞质蛋白水解降解序列(例如泛素)或与野生型蛋白水解降解序列具有至少75%、80%、85%、90%、95%或更大一致性的修饰的胞质蛋白水解降解序列。在一个实施例中,本发明包括源或线粒体中的线粒体组合物,其包含经以下各者修饰的蛋白质:蛋白水解降解序列,例如与野生型蛋白水解降解序列具有至少75%、80%、85%、90%、95%或更大一致性;胞质蛋白水解降解序列,例如泛素;或与野生型蛋白水解降解序列具有至少75%、80%、85%、90%、95%或更大一致性的修饰的胞质蛋白水解降解序列。

在一些实施例中,融合剂可经识别特定蛋白质的蛋白酶域修饰,例如蛋白酶的过表达,例如具有蛋白酶活性的工程化融合蛋白。例如,蛋白酶或来自蛋白酶的蛋白酶域,如MMP、线粒体加工肽酶、线粒体中间肽酶、内膜肽酶。

参见Alfonzo,J.D.和Soll,D.线粒体tRNA导入-理解的挑战才刚刚开始(Mitochondrial tRNA import-the challenge to understand has just begun.)《生物化学(Biological Chemistry)》390:717-722.2009;Langer,T.等人从线粒体释放的肽的表征(Characterization of Peptides Released from Mitochondria.)《生物化学杂志(THEJOURNAL OF BIOLOGICAL CHEMISTRY.)》第280卷,第4期.2691-2699,2005;Vliegh,P.等人合成治疗肽:科学和市场(Synthetic therapeutic peptides:science and market.)《今日药物发现(Drug Discovery Today.)》15(1/2).2010;Quiros P.M.m等人,线粒体蛋白酶在健康、衰老和疾病中的新作用(New roles for mitochondrial proteases in health,ageing and disease.)《自然综述分子细胞生物学(Nature Reviews Molecular CellBiology.)》V16,2015;Weber-Lotfi,F.等人DNA导入能力和线粒体遗传学(DNA importcompetence and mitochondrial genetics.)《生物聚合物与细胞(Biopolymers andCell.)》第30卷第1期71-73,2014。

融合体生成

细胞产生的融合体

融合体的组合物可从培养的细胞,例如培养的哺乳动物细胞,例如培养的人类细胞产生。细胞可为祖细胞或非祖(例如分化的)细胞。细胞可为初级细胞或细胞系(例如本文所述的哺乳动物,例如人类细胞系)。在实施例中,培养的细胞为祖细胞,例如骨髓基质细胞、骨髓源性成年祖细胞(MAPC)、内皮祖细胞(EPC)、胚细胞、在室管膜下区中形成的中间祖细胞、神经干细胞、肌肉干细胞、卫星细胞、肝干细胞、造血干细胞、骨髓基质细胞、表皮干细胞、胚胎干细胞、间充质干细胞、脐带干细胞、前体细胞、肌肉前体细胞、成肌细胞、心肌细胞、神经前体细胞、神经胶质前体细胞、神经元前体细胞、成肝细胞。

在一些实施例中,源细胞为内皮细胞、成纤维细胞、血细胞(例如巨噬细胞、嗜中性粒细胞、粒细胞、白细胞)、干细胞(例如间充质干细胞、脐带干细胞、骨髓干细胞、造血干细胞、诱导多能干细胞,例如衍生自个体的细胞的诱导多能干细胞)、胚胎干细胞(例如来自胚胎卵黄囊、胎盘、脐带、胎儿皮肤、青少年皮肤、血液、骨髓、脂肪组织、造红细胞组织、造血组织的干细胞)、成肌细胞、实质细胞(例如肝细胞)、肺泡细胞、神经元(例如视网膜神经元细胞)、前体细胞(例如视网膜前体细胞、成髓细胞、骨髓前体细胞、胸腺细胞、性母细胞、成巨核细胞、幼巨核细胞、成黑素细胞、成淋巴细胞、骨髓前体细胞、正成红细胞或成血管细胞)、祖细胞(例如心肌祖细胞、卫星细胞、放射状胶质细胞、骨髓基质细胞、胰腺祖细胞、内皮祖细胞、胚细胞)或永生化细胞(例如HeLa、HEK293、HFF-1、MRC-5、WI-38、IMR 90、IMR 91、PER.C6、HT-1080或BJ细胞)。

培养的细胞可来自上皮、***、肌肉或神经组织或细胞,以及其组合。融合体可由来自任何真核(例如哺乳动物)器官系统的培养的细胞产生,例如来自心血管系统(心脏、脉管系统);消化系统(食道、胃、肝脏、胆囊、胰脏、肠、结肠、直肠和***);内分泌系统(下丘脑、脑下垂体、松果体或松果体腺体、甲状腺、甲状旁腺、肾上腺);***系统(肾脏、输尿管、膀胱);淋巴系统(淋巴、***、***、扁桃体、腺样体、胸腺、脾脏);皮肤系统(皮肤、头发、指甲);肌肉系统(例如骨骼肌);神经系统(脑、脊髓、神经);生殖系统(卵巢、子宫、乳腺、睾丸、输精管、精囊、***);呼吸系统(咽、喉、气管、支气管、肺、隔膜);骨骼系统(骨骼、软骨)以及其组合。在实施例中,细胞来自高度有丝***的组织(例如高度有丝***的健康组织,如上皮、胚胎组织、骨髓、肠隐窝)。在实施例中,组织样品为高代谢组织(例如骨骼组织、神经组织、心肌细胞)。

在一些实施例中,细胞来自年轻的供体,例如25岁、20岁、18岁、16岁、12岁、10岁、8岁、5岁、1岁或更年幼的供体。在一些实施例中,细胞来自胎儿组织。

在一些实施例中,细胞衍生自个体且施用至相同个体或具有类似基因特征(例如MHC匹配的)的个体。

在某些实施例中,细胞具有平均尺寸(长度)为大于3000、4000、5000、6000、7000、8000、9000或10000个核苷酸(例如长度在4,000-10,000个核苷酸之间、长度在6,000-10,000个核苷酸之间)的端粒。

融合体可从总体上根据本领域已知的方法培养的细胞产生。在一些实施例中,细胞可在2个或更多个“分期”中培养,例如生长期,其中在一定条件下培养细胞以倍增和增加培养物的生物量,和“生产”期,其中细胞在一定条件下培养以改变细胞表型(例如最大化线粒体表型、增加线粒体的数目或大小、增加氧化磷酸化状态)。还可存在“表达”期,其中在一定条件下培养细胞,以使蛋白质融合剂或外源药剂于细胞膜上的表达最大化且限制其它分期中不期望的融合。

在一些实施例中,从例如在生长期或生产期期间同步化的细胞产生融合体。例如,可通过从培养基消除血清(例如持续约12-24小时)或通过在培养基中使用DNA合成抑制剂,如胸苷、氨基喋呤、羟基脲和胞嘧啶***糖苷而使细胞在G1期同步化。用于哺乳动物细胞周期同步化的其它方法为已知的且公开于例如Rosner等人2013.《自然实验手册(NatureProtocols)》8:602-626中(特别是Rosner中的表1)。

在一些实施例中,可评估细胞且任选地富集所需表型或基因型,以用作如本文所述的融合体组合物的来源。举例来说,可评估细胞且任选地富集例如以下中的一个或多个,例如在培养之前、在培养期间(例如在生长期或生产期期间)或在培养之后但在融合体产生之前:膜电位(例如-5至-200mV的膜电位;心磷脂含量(例如在总脂质的1-20%之间);胆固醇、磷脂酰乙醇胺(PE)、甘油二酯(DAG)、磷脂酸(PA)或脂肪酸(FA)含量;遗传质量>80%、>85%、>90%;融合剂表达或含量;货物表达或含量。

在一些实施例中,从细胞克隆产生融合体,所述细胞克隆基于用作本文所述的融合体组合物的来源所期望的表型或基因型而鉴别、选择或挑选。例如,基于低线粒体突变负荷、长端粒长度、分化状态或特定基因特征(例如与受体匹配的基因特征)而鉴别、选择或挑选细胞克隆。

本文所述的融合体组合物可由来自一种细胞或组织来源或来源组合的融合体构成。例如,融合体组合物可包含来自异种来源(例如动物,前述物种的细胞的组织培养物)、同种异体、自体、来自产生不同蛋白质浓度和分布的特定组织(肝脏、骨骼、神经、脂肪等)、来自不同代谢状态(例如糖酵解、呼吸)的细胞的融合体。组合物还可包含处于不同代谢状态(例如偶联或非偶联)的融合体,如本文中其它地方所描述。

在一些实施例中,融合体由表达融合剂,例如本文所述的融合剂的源细胞产生。在一些实施例中,融合剂被安置于源细胞的膜,例如脂质双层膜,例如细胞表面膜,或亚细胞膜(例如溶酶体膜)中。在一些实施例中,融合体由源细胞产生,其中融合剂被安置于细胞表面膜中。

在一些实施例中,通过诱导外泌体、微囊泡、膜囊泡、细胞外膜囊泡、质膜囊泡、巨质膜囊泡、细胞凋亡体、溶酶体、线粒体粒子(mitoparticle)、核细胞(pyrenocyte)或其它膜封闭囊泡的出芽来产生融合体。

在一些实施例中,产生融合体包含上调相对于源细胞异源或内源的蛋白质的表达。在一些实施例中,蛋白质上调融合体从质膜的释放。在一些实施例中,蛋白质为病毒结构蛋白,例如病毒Gag蛋白、基质蛋白、衣壳蛋白或核衣壳蛋白。在一些实施例中,蛋白质为病毒晚期蛋白。在一些实施例中,蛋白质为由人类基因组编码的蛋白质。在一些实施例中,蛋白质与ESCRT途径关联。在一些实施例中,蛋白质与ESCRT-1关联。在一些实施例中,蛋白质与Tsg101关联。在一些实施例中,蛋白质被并入融合体中。在一些实施例中,蛋白质未被并入融合体中。在一些实施例中,蛋白质为抑制蛋白。在一些实施例中,蛋白质为ARRDC1。在一些实施例中,相比于亲本细胞或外泌体,融合体中存在的TSG101的水平更高。在一些实施例中,融合体中呈总蛋白含量的百分比形式的TSG101的水平为至少约0.001%、0.002%、0.003%、0.004%、0.005%、0.006%或0.007%。在一些实施例中,相比于亲本细胞或外泌体,融合体中存在的ARRDC1的水平更高。在一些实施例中,融合体中呈总蛋白含量的百分比形式的ARRDC1的水平将为至少约0.01%、0.02%、0.03%、0.04%或0.05%。在一些实施例中,蛋白质含有PSAP。PTAP、PPxY或YPxL基序,其募集ESCRT-1、Nedd4家族泛素连接酶(如WWP2)或Alix。例如,此类蛋白质描述于US9737480B2;Scourfield和Martin-Serrano,《生化学会会刊(Biochemical Society Transactions)》2017;Zhadina和Bieniasz,《公共科学图书馆·病原体(PLoS Pathogens)》2010中,其全部以引用的方式并入。

在一些实施例中,通过诱导细胞去核而产生融合体。可以使用如遗传、化学(例如使用放线菌素D,参见Bayona-Bafaluy等人,“用于将线粒体DNA转移至ρ°细胞的化学去核方法(A chemical enucleation method for the transfer of mitochondrial DNA toρ°cells)”《核酸研究(Nucleic Acids Res.)》2003年8月15日;31(16):e98)、机械方法(例如挤压或抽吸,参见Lee等人,“两种去核方法在猪体细胞核转移中的效率的比较研究:挤压和抽吸方法的效果(A comparative study on the efficiency of two enucleationmethods in pig somatic cell nuclear transfer:effects of the squeezing and theaspiration methods.)”《动物生物技术(Anim Biotechnol.)》2008;19(2):71-9)或其组合的分析来进行去核。去核不仅是指完全去除细胞核,而且还指将细胞核从其典型位置移开,使得细胞含有细胞核但它是无功能的。

在实施例中,制造融合体包含产生细胞影、巨质膜囊泡或细胞凋亡体。在实施例中,融合体组合物包含细胞影、巨质膜囊泡和细胞凋亡体中的一个或多个。

在一些实施例中,通过诱导细胞片段化而产生融合体。在一些实施例中,细胞片段化可使用以下方法进行,所述方法包括但不限于:化学方法、机械方法(例如离心(例如超速离心或密度离心)、冻融或超声处理)或其组合。

在一个实施例中,融合体可通过以下方法中的任一种、全部或组合由表达融合剂的源细胞(例如如本文所述)产生:

i)诱导线粒体粒子、外泌体或其它膜封闭囊泡的出芽;

ii)通过以下方法中的任一种或其组合诱导核灭活,例如去核:

a)遗传方法;

b)化学方法,例如使用放线菌素D;或

c)机械方法,例如挤压或抽吸;或

ⅲ)诱导细胞片段化,例如通过以下方法中的任一种或其组合:

a)化学方法;

b)机械方法,例如离心(例如超速离心或密度离心);冻融;或超声处理。

为了避免疑问,应理解,在许多情况下,实际用于制备融合体的源细胞在制成融合体之后将不可用于测试。因此,源细胞与融合体之间的比较不需要分析经实际修饰(例如去核)以制备融合体的源细胞。更确切地,可替代地分析与源细胞另外类似的细胞,例如来自相同培养物、相同基因型、相同组织类型或其任何组合。

在融合体生成之前对细胞的修饰

在一个方面中,在融合体生成之前对细胞进行修饰,如对个体、组织或细胞的修饰。此类修饰可有效地例如改善融合、融合剂表达或活性、货物的结构或功能或靶细胞的结构或功能。

物理修饰

在一些实施例中,细胞在产生融合体之前被物理修饰。例如,如本文中其它地方所描述,融合剂可连接至细胞表面。

在一些实施例中,在产生融合体之前用化学剂处理细胞。例如,可用化学或脂质融合剂处理细胞,使得化学或脂质融合剂与细胞表面非共价或共价相互作用或嵌入细胞表面内。在一些实施例中,用药剂处理细胞以增强脂质于细胞膜中的融合特性。

在一些实施例中,细胞在产生具有一个或多个共价或非共价连接位点的融合体之前被物理修饰,所述连接位点用于细胞表面上的增强融合体对器官、组织或细胞类型的靶向的合成或内源小分子或脂质。

在实施例中,融合体包含提高或降低水平的内源分子。例如,融合体可包含内源分子,所述内源分子也天然存在于天然存在的源细胞中,但其水平高于或低于融合体中的水平。在一些实施例中,多肽由源细胞或融合体中的外源核酸表达。在一些实施例中,多肽从来源分离并且被装载或结合至源细胞或融合体中。

在一些实施例中,在产生融合体之前用化学剂处理细胞以增加内源融合剂于细胞中的表达或活性。在一个实施例中,小分子可增加内源融合剂的转录活化子的表达或活性。在另一实施例中,小分子可降低内源融合剂的转录抑制子的表达或活性。在另一实施例中,小分子为增加内源融合剂表达的表观遗传修饰剂。

在一些实施例中,从用融合抑制化合物,例如溶血磷脂酰胆碱处理的细胞产生融合体。在一些实施例中,从用不裂解融合剂的解离试剂(例如细胞消化液(Accutase))处理的细胞产生融合体。

在一些实施例中,在产生融合体之前用例如CRISPR活化剂对细胞进行物理修饰,以增加或提高融合剂的浓度。

在一些实施例中,细胞被物理修饰以增加或减少细胞器,例如线粒体、高尔基体、内质网、细胞内囊泡(如溶酶体、自噬体)的数量,或增强所述细胞器的结构或功能。

遗传修饰

在一些实施例中,在产生融合体之前对细胞进行遗传修饰,以增加内源融合剂于细胞中的表达。在一个实施例中,遗传修饰可增加内源融合剂的转录活化子的表达或活性。在另一实施例中,遗传修饰可降低内源融合剂的转录抑制子的表达或活性。在一些实施例中,活化子或抑制子是与通过向导RNA靶向内源融合剂的转录活化子或抑制子连接的核酸酶无活性的cas9(dCas9)。在另一实施例中,遗传修饰表观遗传修饰内源融合剂基因以增加其表达。在一些实施例中,表观遗传活化子是与通过向导RNA靶向内源融合剂的表观遗传修饰剂连接的核酸酶无活性的cas9(dCas9)。

在一些实施例中,在产生融合体之前对细胞进行遗传修饰,以增加外源融合剂于细胞中的表达,例如转基因的递送。在一些实施例中,在产生融合体之前将核酸,例如DNA、mRNA或siRNA转移至细胞,例如以增加或减少用于器官、组织或细胞靶向的细胞表面分子(蛋白质、聚糖、脂质或低分子量分子)的表达。在一些实施例中,核酸靶向融合剂的抑制子,例如shRNA、siRNA构筑体。在一些实施例中,核酸编码融合剂抑制子的抑制剂。

在一些实施例中,方法包含将编码融合剂的外源核酸引入至源细胞中。外源核酸可以是例如DNA或RNA。在一些实施例中,外源DNA可为线性DNA、环状DNA或人工染色体。在一些实施例中,DNA被游离地维持。在一些实施例中,DNA被整合至基因组中。外源RNA可为化学修饰的RNA,例如可包含一种或多种骨架修饰、糖修饰、非规范碱基或帽。骨架修饰包括例如硫代磷酸酯、N3′亚磷酰胺、硼烷磷酸酯、膦酰基乙酸酯、硫代-PACE、吗啉代亚磷酰胺或PNA。糖修饰包括例如2'-O-Me、2′F、2′F-ANA、LNA、UNA和2'-O-MOE。非规范碱基包括例如5-溴-U和5-碘-U、2,6-二氨基嘌呤、C-5丙炔基嘧啶、二氟甲苯、二氟苯、二氯苯、2-硫尿苷、假尿苷和二氢尿苷。帽包括例如ARCA。另外的修饰论述于例如Deleavey等人,“设计用于靶基因沉默的化学修饰的寡核苷酸(Designing Chemically Modified Oligonucleotides forTargeted Gene Silencing)”《化学与生物学(Chemistry&Biology)》第19卷,第8期,2012年8月24日,第937-954页,其以全文引用的方式并入本文中。

在一些实施例中,在产生融合体之前用化学剂处理细胞以增加外源融合剂于细胞中的表达或活性。在一个实施例中,小分子可增加外源融合剂的转录活化子的表达或活性。在另一实施例中,小分子可降低外源融合剂的转录抑制子的表达或活性。在另一实施例中,小分子为增加外源融合剂表达的表观遗传修饰剂。

在一些实施例中,核酸编码修饰的融合剂。例如,具有可调节的融合活性,例如特定细胞类型、组织类型或局部微环境活性的融合剂。此类可调节的融合活性可包括通过低pH、高pH、热、红外光、细胞外酶活性(真核或原核)或暴露于小分子、蛋白质或脂质来活化和/或引发融合活性。在一些实施例中,小分子、蛋白质或脂质显示于靶细胞上。

在一些实施例中,在产生融合体之前对细胞进行遗传修饰,以改变(即,上调或下调)信号传导途径(例如Wnt/β-连环蛋白途径)的表达。在一些实施例中,在产生融合体之前对细胞进行遗传修饰,以改变(例如上调或下调)一种或多种所关注基因的表达。在一些实施例中,在产生融合体之前对细胞进行遗传修饰,以改变(例如上调或下调)一种或多种所关注核酸(例如miRNA或mRNA)的表达。在一些实施例中,在产生融合体之前将核酸,例如DNA、mRNA或siRNA转移至细胞,例如以增加或减少信号传导途径、基因或核酸的表达。在一些实施例中,核酸靶向信号传导途径、基因或核酸的抑制子,或抑制信号传导途径、基因或核酸。在一些实施例中,核酸编码上调或下调信号传导途径、基因或核酸的转录因子。在一些实施例中,活化子或抑制子是与通过向导RNA靶向信号传导途径、基因或核酸的转录活化子或抑制子连接的核酸酶无活性的cas9(dCas9)。在另一实施例中,遗传修饰表观遗传修饰内源信号传导途径、基因或核酸以使其表达。在一些实施例中,表观遗传活化子是与通过向导RNA靶向信号传导途径、基因或核酸的表观遗传修饰剂连接的核酸酶无活性的cas9(dCas9)。在一些实施例中,在产生融合体之前对细胞的DNA进行编辑,以改变(例如上调或下调)信号传导途径(例如Wnt/β-连环蛋白途径)、基因或核酸的表达。在一些实施例中,使用向导RNA和CRISPR-Cas9/Cpf1或其它基因编辑技术编辑DNA。

可使用重组方法对细胞进行遗传修饰。可使用重组方法获得编码所需基因的核酸序列,例如通过从表达基因的细胞筛选文库、通过从已知包括基因的载体衍生基因或通过从含有其的细胞和组织直接分离(使用标准技术)。或者,可以合成方式产生所关注基因,而不是克隆所述基因。

天然或合成核酸的表达通常通过将编码所关注基因的核酸与启动子可操作地连接,且将构筑体并入至表达载体中来实现。载体可适合于在真核细胞中进行复制和整合。典型的克隆载体含有适用于表达所需核酸序列的转录与翻译终止子、起始序列和启动子。

在一些实施例中,可用一个或多个表达区,例如基因对细胞进行遗传修饰。在一些实施例中,可用外源基因(例如能够表达外源基因产物,如RNA或多肽产物)和/或外源调节核酸对细胞进行遗传修饰。在一些实施例中,可用编码相对于靶细胞内源的基因产物的外源序列和/或能够调节内源基因表达的外源调节核酸对细胞进行遗传修饰。在一些实施例中,可用外源基因和/或调节外源基因表达的调节核酸对细胞进行遗传修饰。在一些实施例中,可用外源基因和/或调节内源基因表达的调节核酸对细胞进行遗传修饰。本领域技术人员应理解,本文所述的细胞可被遗传修饰以表达多种编码蛋白质或调节分子的外源基因,其可例如作用于靶细胞的内源或外源基因组的基因产物。在一些实施例中,此类基因赋予融合体特征,例如调节与靶细胞的融合。在一些实施例中,可对细胞进行遗传修饰以表达内源基因和/或调节核酸。在一些实施例中,内源基因或调节核酸调节其它内源基因的表达。在一些实施例中,细胞可被遗传修饰以表达内源基因和/或调节核酸,所述内源基因和/或调节核酸与其它染色体上的内源基因和/或调节核酸型式不同地(例如诱导性地、组织特异性地、组成性地或以更高或更低水平)表达。

启动子元件(例如增强子)调节转录起始的频率。通常,这些元件位于起始位点上游30-110bp的区域,尽管最近已显示许多启动子也含有起始位点下游的功能元件。启动子元件之间的间距通常是灵活的,以使得当元件相对于彼此反转或移动时,启动子功能得以保留。在胸苷激酶(tk)启动子中,启动子元件之间的间距可在活性开始下降之前增加至相隔50bp。取决于启动子,似乎单个元件可协同或独立地起作用以活化转录。

合适的启动子的一个实例是立即早期巨细胞病毒(CMV)启动子序列。此启动子序列为强组成型启动子序列,能够驱动与其可操作连接的任何聚核苷酸序列的高水平表达。合适的启动子的另一实例为延伸生长因子-1α(EF-1α)。但是,还可使用其它组成型启动子序列,包括但不限于猿猴病毒40(SV40)早期启动子、小鼠乳腺肿瘤病毒(MMTV)、人类免疫缺陷病毒(HIV)长末端重复序列(LTR)启动子、MoMuLV启动子、禽白血病病毒启动子、埃-巴二氏病毒(Epstein-Barr virus)立即早期启动子、劳氏肉瘤病毒(Rous sarcoma virus)启动子、以及人类基因启动子,如但不限于肌动蛋白启动子、肌球蛋白启动子、血红蛋白启动子和肌酸激酶启动子。

另外,本发明不应限于使用组成型启动子。诱导型启动子也被认为是本发明的一部分。诱导型启动子的使用提供了一种分子开关,所述分子开关能够在需要此类表达时接通与其可操作连接的聚核苷酸序列的表达,或在不需要表达时关断所述表达。诱导型启动子的实例包括但不限于组织特异性启动子、金属硫蛋白启动子、糖皮质激素启动子、孕酮启动子和四环素启动子。在一些实施例中,在产生融合体之前,例如在产生融合体之前3、6、9、12、24、26、48、60或72小时上调融合剂的表达。

引入至源中的表达载体还可含有选择标记基因或报告基因或二者,以便于从寻求被转染或通过病毒载体感染的细胞群体鉴别和选择表达细胞。在其它方面,选择标记可携带在单独的DNA片段上且用于共转染程序。选择标记和报导基因均可侧接有适当的调节序列,以使得能够在宿主细胞中表达。适用的选择标记包括例如抗生素抗性基因,如neo等。

报告基因可用于鉴别潜在转染的细胞和评估调节序列的功能。一般来说,报告基因是如下的基因:受体来源中不存在或不被受体来源表达,并且编码通过一些易于检测的特性(例如酶活性)来体现表达的多肽。在DNA已引入至受体细胞之后的合适时间分析报告基因的表达。合适的报告基因可包括编码荧光素酶、β-半乳糖苷酶、氯霉素乙酰转移酶、分泌的碱性磷酸酶或绿色荧光蛋白基因的基因(例如Ui-Tei等人,2000《FEBS快报(FEBSLetters)》479:79-82)。合适的表达系统是众所周知的且可使用已知技术制备或商业上获得。一般来说,将具有最小5'侧接区,显示最高水平的报告基因表达的构筑体鉴别为启动子。此类启动子区可与报告基因连接且用于评估药剂调节启动子驱动的转录的能力。

在一些实施例中,细胞可被遗传修饰以改变一种或多种蛋白质的表达。一种或多种蛋白质的表达可在特定的时间被修饰,例如来源的发育或分化状态。在一个实施例中,本发明包括从被遗传修饰以改变一种或多种影响融合活性、结构或功能的蛋白,例如融合剂蛋白或非融合剂蛋白的表达的细胞来源产生的融合体。一种或多种蛋白质的表达可局限于一个或多个特定位置或遍及整个来源。

在一些实施例中,融合剂蛋白的表达被修饰。在一个实施例中,本发明包括从具有修饰的融合剂蛋白表达,例如融合剂表达增加或减少至少10%、15%、20%、30%、40%、50%、60%、75%、80%、90%或更多的细胞产生的融合体。

在一些实施例中,细胞可被工程化以表达靶向融合剂蛋白的胞质酶(例如蛋白酶、磷酸酶、激酶、脱甲基酶、甲基转移酶、乙酰基酶)。在一些实施例中,胞质酶通过改变翻译后修饰来影响一种或多种融合剂。蛋白质的翻译后蛋白质修饰可影响对养分可用性和氧化还原条件的反应性,和蛋白质-蛋白质相互作用。在一个实施例中,本发明包括一种融合体,其包含具有改变的翻译后修饰,例如翻译后修饰增加或减少至少10%、15%、20%、30%、40%、50%、60%、75%、80%、90%或更多的融合剂。

将修饰引入至细胞中的方法包括物理、生物和化学方法。参见例如Geng.和Lu,用于细胞分析和递送的微流体电穿孔(Microfluidic electroporation for cellularanalysis and delivery.)《芯片实验室(Lab on a Chip.)》13(19):3803-21.2013;Sharei,A.等人用于细胞内递送的无载体微流体平台(A vector-free microfluidicplatform for intracellular delivery.)《美国国家科学院院刊(PNAS)》第110卷第6期2013;Yin,H.等人,基于基因的疗法的非病毒载体(Non-viral vectors for gene-basedtherapy.)《自然综述遗传学(Nature Reviews Genetics.)》15:541-555.2014。修饰用于产生本文所述的融合体的细胞的合适方法包括例如扩散、渗透、渗透脉冲、渗透压休克、低渗溶解、低渗透析、离子电泳作用、电穿孔、超声处理、显微注射、钙沉淀、膜插层、脂质介导的转染、清洁剂处理、病毒感染、受体介导的内吞作用、蛋白质转导域的使用、粒子发射、膜融合、冻融、机械破坏和过滤。

确认遗传修饰的存在包括多种分析。此类分析包括例如分子生物分析,如DNA印迹法和RNA印迹法、RT-PCR和PCR;生物化学分析,如检测特定肽的存在或不存在,例如通过免疫学方法(ELISA和蛋白质印迹)或通过本文所述的分析。

对线粒体生物发生的修饰

在一些实施例中,本文所述的方法包含:

(a)提供多个已与线粒体生物发生的调节剂接触的源细胞,例如使多个源细胞与线粒体生物发生的调节剂(例如(i)调节mtDNA扩增的药剂,(ii)调节线粒体脂质合成的药剂,或(iii)调节核编码的线粒体蛋白生产的药剂或其组合)接触,和

(b)从多个细胞分离融合体。

在实施例中,线粒体生物发生的调节剂上调或刺激线粒体生物发生。在其它实施例中,线粒体生物发生的调节剂下调或抑制线粒体生物发生。

在实施例中,调节mtDNA扩增的药剂为促进或抑制mtDNA扩增的药剂。在实施例中,调节线粒体脂质合成的药剂为促进或抑制线粒体脂质合成的药剂。在实施例中,调节核编码的线粒体蛋白生产的药剂为促进或抑制核编码的线粒体蛋白生产的药剂。

在实施例中,促进mtDNA扩增的药剂包含:参与mtDNA扩增的蛋白质、上调参与mtDNA复制的蛋白质的蛋白质或脱氧核糖核苷酸或其前体。在实施例中,促进线粒体脂质合成的药剂为脂质合成基因。在实施例中,促进核编码的线粒体蛋白生产的药剂为转录因子。

在实施例中,抑制mtDNA扩增的药剂包含:参与mtDNA扩增的蛋白质的抑制剂(例如拓扑异构酶抑制剂、***剂、下调参与mtDNA扩增的蛋白质的siRNA、下调参与mtDNA扩增的蛋白质的靶向核酸酶、干扰参与mtDNA扩增的蛋白质的基因的CRISPR/Cas9分子)、下调参与mtDNA复制的蛋白质的蛋白质或其脱氧核糖核苷酸类似物或前体。在实施例中,抑制线粒体脂质合成的药剂为脂质合成基因的抑制剂。在实施例中,抑制核编码的线粒体蛋白生产的药剂为转录抑制子。

在实施例中,调节线粒体生物发生包含调节表4的蛋白质。在实施例中,调节线粒体生物发生包含调节上调、下调、刺激或抑制直接控制基因(例如主调节因子或DNA结合因子)。在实施例中,调节线粒体生物发生包含上调、下调、刺激或抑制表4的直接控制基因(例如表4的主调节因子或表4的DNA结合因子)。在实施例中,调节线粒体生物发生包含上调、下调、刺激或抑制间接控制基因(例如活化因子或抑制因子)。在实施例中,调节线粒体生物发生包含上调、下调、刺激或抑制表4的间接控制基因(例如表4的活化因子或表4的抑制因子)。在实施例中,调节线粒体生物发生包含上调或下调代谢物,例如表4的代谢物。

在实施例中,促进或抑制线粒体脂质合成的药剂能够引起或导致线粒体膜中的脂质比例改变。在实施例中,调节线粒体脂质合成的药剂使得以下线粒体脂质中的一种的比例增加或减少:心磷脂、磷脂酰甘油、磷脂酰乙醇胺、磷脂酸、CDP-二酰甘油、磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰肌醇、胆固醇或神经酰胺,例如增加或减少至少10%、20%、30%、40%、50%、60%、70%、80%或90%。

在一些实施例中,方法包含提供(i)、(ii)和(iii)中的一个、两个或全部三个。在一些实施例中,方法包含提供(i)、(ii)和(iii)中的两个,例如(i)和(ii)、(i)和(iii)或(ii)和(iii)。在一些实施例中,方法包含以足以刺激线粒体生物发生的水平提供(i)、(ii)和(iii)中的一个、两个或全部三个之一。

在实施例中,方法包含调节(例如刺激)mtDNA扩增(例如至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节mtDNA扩增发生在没有脂质合成和核编码的线粒体蛋白生产中的一个或两个的可检测调节(例如刺激)的情况下。在实施例中,方法包含调节(例如刺激)脂质合成(例如至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节发生在没有mtDNA扩增和核编码的线粒体蛋白生产中的一个或两个的可检测调节(例如刺激)的情况下。在实施例中,方法包含调节(例如刺激)核编码的线粒体蛋白生产(例如至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节核编码的线粒体蛋白生产发生在没有脂质合成和mtDNA扩增中的一个或两个的可检测调节(例如刺激)的情况下。

在实施例中,方法包含调节(例如刺激)mtDNA扩增和脂质合成(例如各自独立地为至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节mtDNA扩增和脂质合成发生在没有核编码的线粒体蛋白生产的可检测调节(例如刺激)的情况下。在实施例中,方法包含调节(例如刺激)mtDNA扩增和核编码的线粒体蛋白生产(例如各自独立地为至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节mtDNA扩增和核编码的线粒体蛋白生产发生在没有脂质合成的可检测调节(例如刺激)的情况下。在实施例中,方法包含调节(例如刺激)脂质合成和核编码的线粒体蛋白生产(例如各自独立地为至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。在实施例中,调节脂质合成和核编码的线粒体蛋白生产发生在没有mtDNA扩增的可检测调节(例如刺激)的情况下。

在实施例中,方法包含调节(例如刺激)mtDNA扩增、脂质合成和核编码的线粒体蛋白生产(例如各自独立地为至少10%、20%、30%、40%、50%、60%、70%、80%或90%)。

在实施例中,线粒体生物发生的调节剂为线粒体生物发生的刺激剂。在实施例中,线粒体生物发生的调节剂为褐变的刺激剂。在实施例中,褐变的刺激剂为PGC1a。在实施例中,褐变的刺激剂为醌、FGF21、鸢尾素、爱帕琳(apelin)或异丙肾上腺素。在实施例中,对多个源细胞或衍生自多个源细胞的融合体组合物分析褐变,例如通过ELISA分析UCP1表达,例如如Spaethling等人“棕色脂肪细胞的单细胞转录组学和功能靶标验证显示其在代谢稳态中的复杂作用(Single-cell transcriptomics and functional target validation ofbrown adipocytes show their complex roles in metabolic homeostasis.)”《美国实验生物学会联合会杂志(FASEB Journal)》,第30卷,第1期,第81-92页,2016中所述。

在实施例中,对多个源细胞或衍生自多个源细胞的融合体组合物分析mtDNA扩增、线粒体脂质合成或核编码的线粒体蛋白生产或其任何组合的存在或水平。

源细胞可与线粒体生物发生的调节剂以足以增加源细胞中的线粒体生物发生的量和时间(例如增加至少10%、15%、20%、30%、40%、50%、60%、75%、80%、90%或更多)接触。此类线粒体生物发生的调节剂描述于例如Cameron等人2016.开发诱导线粒体生物发生的治疗剂用于治疗急性和慢性退化性疾病(Development of Therapeutics ThatInduce Mitochondrial Biogenesis for the Treatment of Acute and ChronicDegenerative Diseases.)DOI:10.1021/acs.jmedchem.6b00669中。在实施例中,在生长期期间和/或在生产期期间将线粒体生物发生的调节剂添加至源细胞培养物。在实施例中,在源细胞培养物具有预定的目标密度时添加线粒体生物发生的调节剂。

在一个实施例中,线粒体生物发生的调节剂是从天然产物或其合成等效物提取的药剂,所述药剂足以增加源细胞中的线粒体生物发生。此类药剂的实例包括白藜芦醇、表儿茶素、姜黄素、植物***(例如染料木黄酮、大豆黄酮、吡咯并喹啉、醌、拟雌内酯和雌马酚)。

在另一实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生、源细胞中的线粒体的代谢物,例如初级或次级代谢物。此类代谢物,例如初级代谢物包括醇(如乙醇)、乳酸和某些氨基酸,且次级代谢物包括通过修饰初级代谢物产生的有机化合物,描述于“初级和次级代谢物(Primary and Secondary Metabolites.)”《无限微生物学(Boundless Microbiology)》Boundless,2016年5月26日中。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生或源细胞中的线粒体的能量来源,例如糖、ATP、氧化还原辅因子,如NADH和FADH2。此类能源来源,例如丙酮酸酯或棕榈酸酯描述于Mehlman,M.线粒体中的能量代谢和代谢过程调节(Energy Metabolism and the Regulation of Metabolic Processes inMitochondria);Academic Press,1972中。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的转录因子调节剂。此类转录因子调节剂的实例包括:噻唑烷二酮(例如罗格列酮(rosiglitazone)、吡格列酮(pioglitazone)、曲格列酮(troglitazone)和环格列酮(ciglitazone))、***(例如17β-***、孕酮)和***受体激动剂;SIRT1活化剂(例如SRT1720、SRT1460、SRT2183、SRT2104)。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的激酶调节剂。实例包括:AMPK和AMPK活化剂,如AICAR、二甲双胍、苯乙双胍、A769662;和ERK1/2抑制剂,如U0126、曲美替尼(trametinib)。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的环核苷酸调节剂。实例包括NO-cGMP-PKG途径的调节剂(例如,氧化氮(NO)供体,如硝普钠、(±)S-亚硝基-N-乙酰青霉胺(SNAP)、二乙胺NONOate(DEA-NONOate)、二亚乙基三胺-NONOate(DETA-NONOate);sGC刺激剂和活化剂,如西纳西呱(cinaciguat)、利奥西呱(riociguat)和BAY 41-2272;和磷酸二酯酶(PDE)抑制剂,如扎普司特(zaprinast)、西地那非(sildenafil)、乌地那非(udenafil)、他达拉非(tadalafil)和伐地那非(vardenafil))和cAMP-PKA-CREB Axis的调节剂,如磷酸二酯酶(PDE)抑制剂,如咯利普兰(rolipram)。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的G蛋白偶联受体(GPCR)的调节剂,如GPCR配体。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的***素-1受体调节剂。实例包括泰伦那班(taranabant)和利蒙诺班(rimonobant)。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的5-羟色胺受体调节剂。实例包括α-甲基-5-羟色胺、DOI、CP809101、SB242084、血清素再摄取抑制剂,如氟西汀、α-甲基5HT、1-(2,5-二甲氧基-4-碘苯基)-2-氨基丙烷、LY334370和LY344864。

在一个实施例中,线粒体生物发生的调节剂为足以增加源细胞中的线粒体生物发生的β肾上腺素能受体调节剂。实例包括肾上腺素、去甲肾上腺素、异丙肾上腺素、美托洛尔(metoprolol)、福莫特罗(formoterol)、非诺特罗(fenoterol)和丙卡特罗(procaterol)。

在一个实施例中,源细胞被修饰,例如遗传修饰以表达线粒体生物发生的转录活化子,例如转录因子或转录共活化子,如PGC1α。在一些实施例中,细胞表达PGC1α(例如过表达内源或表达外源PGC1α)。

表4.线粒体生物发生的转录控制。参见例如Scarpulla等人,“线粒体生物发生的转录整合(Transcriptional integration of mitochondrial biogenesis)”《内分泌与代谢趋势(Trends in Endocrinology&Metabolism)》,第23卷,第9期,第459-466页,2012年9月;Hock等人“线粒体生物发生和功能的转录控制(Transcriptional control ofmitochondrial biogenesis and function.)”《生理学年评(Annu Rev Physiol.)2009;71:177-203.Santra等人,“生酮治疗可减少培养的人细胞中线粒体DNA的缺失(KetogenicTreatment Reduces Deleted Mitochondrial DNAs in Cultured Human Cells)”《神经病学年鉴(Ann Neurol.)》2004年11月;56(5):662-9.Kanabus等人,“癸酸治疗对患有复杂I缺陷利氏综合症的患者的成纤维细胞线粒体功能的多效性作用(The pleiotropic effectsof decanoic acid treatment on mitochondrial function in fibroblasts frompatients with complex I deficient Leigh syndrome)”《遗传代谢疾病杂志(J InheritMetab Dis.)》2016年5月;39(3):415-26,其各自以全文引用的方式并入本文中。

Figure BDA0002356542560001121

Figure BDA0002356542560001131

融合体修饰

在一个方面中,对融合体进行修饰。此类修饰可有效地(例如)改善靶向、功能或结构。

在一些实施例中,用可非共价或共价连接至膜表面的融合剂,例如本文所述的化学融合剂处理融合体。在一些实施例中,用可将自身非共价或共价连接或嵌入于膜中的融合剂,例如蛋白质或脂质融合剂处理融合体。

在一些实施例中,配体通过存在于融合体表面上的官能性化学基团(羧酸、醛、胺、硫氢基和羟基)结合至融合体表面。

此类反应性基团包括但不限于顺丁烯二酰亚胺基团。例如,可合成融合体以包括顺丁烯二酰亚胺结合的磷脂,如但不限于DSPE-MaL-PEG2000。

在一些实施例中,合成或天然的小分子或脂质可共价或非共价连接至融合体表面。在一些实施例中,融合体中的膜脂质可被修饰以促进、诱导或增强融合特性。

在一些实施例中,融合体通过装载修饰的蛋白质而修饰(例如实现新颖的功能性、改变翻译后修饰、结合至线粒体膜和/或线粒体膜蛋白、形成具有异源功能的可裂解蛋白质、形成预定用于蛋白水解降解的蛋白质、分析药剂的位置和水平或将药剂以载体形式递送)。在一个实施例中,本发明包括装载有修饰的蛋白质的融合体。

在一些实施例中,外源蛋白非共价结合至融合体。蛋白质可包括用于释放的可裂解域。在一个实施例中,本发明包括一种融合体,其包含具有可裂解域的外源蛋白。

在一些实施例中,融合体用预定用于蛋白水解降解的蛋白质修饰。多种蛋白酶识别特定的蛋白质氨基酸序列且靶向蛋白质以进行降解。这些蛋白质降解酶可用于特异性降解具有蛋白水解降解序列的蛋白质。在一个实施例中,本发明包括一种融合体,其包含调节的水平的一种或多种蛋白质降解酶,例如蛋白质降解酶增加或减少至少10%、15%、20%、30%、40%、50%、60%、75%、80%、90%更大。

如本文所述,可将非融合剂添加剂添加至融合体以对其结构和/或特性进行修饰。例如,可将胆固醇或鞘磷脂添加至膜,以帮助稳定结构且防止内部货物泄漏。另外,可由氢化的卵磷脂酰胆碱或卵磷脂酰胆碱、胆固醇和磷酸二鲸蜡酯制备膜。(关于综述,参见例如Spuch和Navarro,《药物递送杂志》,第2011卷,文章编号469679,第12页,2011.doi:10.1155/2011/469679)。

在一些实施例中,融合体在外表面上包含一个或多个靶向基团(例如靶向蛋白)以靶向特定的细胞或组织类型(例如心肌细胞)。这些靶向基团包括但不限于受体、配体、抗体等。这些靶向基团在靶细胞的表面上结合其搭配物。在实施例中,靶向蛋白特异性针对本文所述的靶细胞,例如皮肤细胞、心肌细胞、肝细胞、肠细胞(例如小肠细胞)、胰腺细胞、脑细胞、***细胞、肺细胞、结肠细胞或骨髓细胞上的细胞表面标记。

在一些实施例中,靶向蛋白结合靶细胞上的细胞表面标记。在实施例中,细胞表面标记包含蛋白质、糖蛋白、受体、细胞表面配体、I类跨膜蛋白、II类跨膜蛋白或III类跨膜蛋白。

在一些实施例中,靶向部分由多肽组成,所述多肽是与融合剂独立的多肽。在一些实施例中,包含靶向部分的多肽包含跨膜域和细胞外靶向域。在实施例中,细胞外靶向域包含scFv、DARPin、纳米抗体、受体配体或抗原。在一些实施例中,细胞外靶向域包含抗体或其抗原结合片段(例如Fab、Fab'、F(ab')2、Fv片段、ScFv抗体片段、二硫键连接的Fv(sdFv)、由VH和CH1域组成的Fd片段、线性抗体、单域抗体(如sdAb(VL或VH))或骆驼VHH域)、抗原结合III型纤连蛋白(Fn3)骨架(如纤连蛋白多肽微型抗体)、配体、细胞因子、趋化因子或T细胞受体(TCR)。

在一些实施例中,本文所述的融合体经诊断剂官能化。诊断剂的实例包括但不限于正电子发射断层扫描(PET)、计算机辅助断层扫描(CAT)、单光子发射计算机断层扫描、x射线、荧光透视法以及磁共振成像(MRI)中所用的市售成像剂;以及造影剂。适用作MRI中的造影剂的材料的实例包括钆螯合物,以及铁、镁、锰、铜和铬。

将官能团引入至融合体的另一实例为在制备后期间,通过将融合体和配体与同双官能或异双官能交联剂直接交联。此程序可使用合适的化学物质和一类交联剂(如本文所论述的CDI、EDAC、戊二醛等)或在制备之后通过过融合体表面的化学修饰将配体偶联至融合体表面的任何其它交联剂。这还包括一种方法,其中两亲性分子,如脂肪酸、脂质或功能稳定剂能够被动地吸附并粘附至融合体表面,由此引入官能性端基以系栓至配体。

货物

在一些实施例中,本文所述的融合体包括货物,例如亚细胞货物。

在一些实施例中,本文所述的融合体包括货物,例如治疗剂,例如内源治疗剂或外源治疗剂。

在一些实施例中,货物在衍生融合体的细胞中不天然表达。在一些实施例中,货物在衍生融合体的细胞中天然表达。在一些实施例中,货物为在衍生融合体的细胞中天然表达的野生型核酸或蛋白质的突变体,或为在衍生融合体的细胞中天然表达的突变体的野生型。

在一些实施例中,货物通过在衍生融合体的细胞中的表达(例如由通过转染、转导或电穿孔引入的DNA或mRNA的表达)而装载至融合体中。在一些实施例中,货物由整合至基因组中或以游离形式维持的DNA表达。在一些实施例中,货物的表达为组成性的。在一些实施例中,货物的表达为诱导性的。在一些实施例中,紧邻在产生融合体之前诱导货物的表达。在一些实施例中,与融合剂的表达同时诱导货物的表达。

在一些实施例中,通过电穿孔将货物装载至融合体中,装载至融合体自身中或衍生融合体的细胞中。在一些实施例中,通过转染(例如编码货物的DNA或mRNA的转染)将货物装载至融合体中,装载至融合体自身中或衍生融合体的细胞中。

在一些方面,本公开提供包含以下的融合体组合物(例如药物组合物):

(i)以下中的一个或多个:线粒体(例如如国际申请PCT/US16/64251中所述)、线粒体、细胞器(例如线粒体、溶酶体、细胞核、细胞膜、细胞质、内质网、核糖体、液泡、内体、剪接体、聚合酶、衣壳、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、肌原纤维、刺丝囊、过氧化物酶体、蛋白酶体、囊泡、应激颗粒和细胞器网络),或去核细胞,例如包含前述中的任一种的去核细胞,和(ii)融合剂,例如成肌蛋白。

在实施例中,融合剂存在于线粒体或线粒体外部的脂质双层中。在实施例中,线粒体具有如例如国际申请PCT/US16/64251中所描述的一种或多种特性,所述申请以全文引用的方式并入本文中,包括实例和发明内容。

在一些实施例中,货物可包括一种或多种核酸序列、一种或多种多肽、核酸序列和/或多肽的组合、一种或多种细胞器和其任何组合。在一些实施例中,货物可包括一种或多种细胞组分。在一些实施例中,货物包括一种或多种胞质和/或核组分。

在一些实施例中,货物包括核酸,例如DNA、nDNA(核DNA)、mtDNA(线粒体DNA)、蛋白质编码DNA、基因、操纵子、染色体、基因组、转座子、逆转录转座子、病毒基因组、内含子、外显子、修饰的DNA、mRNA(信使RNA)、tRNA(转移RNA)、修饰的RNA、微RNA、siRNA(小干扰RNA)、tmRNA(转移信使RNA)、rRNA(核糖体RNA)、mtRNA(粒线体RNA)、snRNA(小核RNA)、小核仁RNA(snoRNA)、SmY RNA(mRNA反式剪接RNA)、gRNA(向导RNA)、TERC(端粒酶RNA组分)、aRNA(反义RNA)、顺式NAT(顺式天然反义转录物)、CRISPR RNA(crRNA)、lncRNA(长非编码RNA)、piRNA(piwi相互作用RNA)、shRNA(短发夹RNA)、tasiRNA(反式作用siRNA)、eRNA(增强子RNA)、卫星RNA、pcRNA(蛋白质编码RNA)、dsRNA(双链RNA)、RNAi(干扰RNA)、circRNA(环状RNA)、重编程RNA、适体和其任何组合。在一些实施例中,核酸为野生型核酸。在一些实施例中,蛋白质为突变核酸。在一些实施例中,核酸为多个核酸序列的融合物或嵌合体。

在一些实施例中,使用基因编辑技术,例如向导RNA和CRISPR-Cas9/Cpf1,或使用不同的靶向核酸内切酶(例如锌指核酸酶、转录活化子样核酸酶(TALEN))编辑融合体中的DNA或衍生融合体的细胞中的DNA,以校正基因突变。在一些实施例中,基因突变与个体的疾病相关。DNA编辑的实例包括小***/缺失、大缺失、模板DNA的基因校正或DNA的大***。在一些实施例中,用非同源末端连接(NHEJ)或同源性定向修复(HDR)来实现基因编辑。在一些实施例中,编辑为基因敲除。在一些实施例中,编辑为基因敲入。在一些实施例中,DNA的两个等位基因都被编辑。在一些实施例中,单个等位基因被编辑。在一些实施例中,进行多次编辑。在一些实施例中,融合体或细胞衍生自个体,或与个体基因匹配,或与个体免疫学相容(例如具有类似MHC)。

在一些实施例中,货物可包括核酸。例如,货物可包含增强内源蛋白的表达的RNA,或抑制内源蛋白的蛋白质表达的siRNA或miRNA。例如,内源蛋白可调节靶细胞中的结构或功能。在一些实施例中,货物可包括编码工程化蛋白质的核酸,所述工程化蛋白质调节靶细胞中的结构或功能。在一些实施例中,货物是靶向调节靶细胞中的结构或功能的转录活化子的核酸。

在一些实施例中,货物包括多肽,例如酶、结构多肽、信号传导多肽、调节多肽、转运多肽、感觉多肽、运动多肽、防御多肽、贮存多肽、转录因子、抗体、细胞因子、激素、分解代谢多肽、合成代谢多肽、蛋白水解多肽、代谢多肽、激酶、转移酶、水解酶、裂解酶、异构酶、连接酶、酶调节剂多肽、蛋白质结合多肽、脂质结合多肽、膜融合多肽、细胞分化多肽、表观遗传多肽、细胞死亡多肽、核转运多肽、核酸结合多肽、重编程多肽、DNA编辑多肽、DNA修复多肽、DNA重组多肽、转座酶多肽、DNA整合多肽、靶向核酸内切酶(例如锌指核酸酶、转录活化子样核酸酶(TALEN)、cas9和其同源物)、重组酶和其任何组合。在一些实施例中,蛋白质靶向细胞中的蛋白质以进行降解。在一些实施例中,蛋白质通过将蛋白质定位于蛋白酶体而靶向细胞中的蛋白质以进行降解。在一些实施例中,蛋白质为野生型蛋白质。在一些实施例中,蛋白质为突变蛋白。在一些实施例中,蛋白质为融合或嵌合蛋白。

在一些实施例中,货物包括小分子,例如离子(例如Ca2+、Cl-、Fe2+)、碳水化合物、脂质、活性氧类、活性氮类、类异戊二烯、信号传导分子、血红素、多肽辅因子、受电子化合物、给电子化合物、代谢物、配体和其任何组合。在一些实施例中,小分子为与细胞中的靶标相互作用的药物。在一些实施例中,小分子靶向细胞中的蛋白质以进行降解。在一些实施例中,小分子通过将蛋白质定位于蛋白酶体而靶向细胞中的蛋白质以进行降解。在一些实施例中,小分子为蛋白水解靶向嵌合体分子(PROTAC)。

在一些实施例中,货物包括蛋白质、核酸或代谢物,例如多个多肽、多个核酸、多个小分子的混合物;核酸、多肽和小分子的组合;核糖核蛋白复合物(例如Cas9-gRNA复合物);多个转录因子、多个表观遗传因子、重编程因子(例如Oct4、Sox2、cMyc和Klf4);多个调节RNA;和其任何组合。

在一些实施例中,货物包括一种或多种细胞器,例如线粒体、线粒体、溶酶体、细胞核、细胞膜、细胞质、内质网、核糖体、液泡、内体、剪接体、聚合酶、衣壳、顶体、自噬体、中心粒、糖酵解酶体、乙醛酸循环体、氢化酶体、黑素体、纺锤剩体、肌原纤维、刺丝囊、过氧化物酶体、蛋白酶体、囊泡、应激颗粒、细胞器网络和其任何组合。

在一些实施例中,货物富集于融合体或细胞膜。在一些实施例中,通过经由肽信号序列靶向至膜来富集货物。在一些实施例中,货物通过与膜相关的蛋白质、脂质或小分子结合而富集。在一些实施例中,货物共价结合至膜相关的蛋白质、脂质或小分子。在一些实施例中,共价键可被蛋白酶裂解。在一些实施例中,货物通过与膜相关的蛋白质、脂质或小分子的非共价相互作用而结合。在一些实施例中,膜蛋白为融合剂。在一些实施例中,货物通过辅助介体富集。例如,在一些实施例中,货物为与中间蛋白质结合的核酸,且中间蛋白质结合至膜相关的蛋白质、脂质或小分子,从而将核酸货物定位于膜。在一些实施例中,核酸与中间蛋白质之间的相互作用为共价或非共价的。在一些实施例中,中间蛋白质与膜相关的蛋白质、脂质或小分子之间的相互作用为共价的,或为共价且可通过蛋白酶裂解的,或为非共价的。例如,US20170175086A1和US9816080B2描述通过货物蛋白质的片段与膜相关的蛋白质之间的非共价结合来富集货物蛋白质。在一些实施例中,货物通过与膜相关的蛋白质、脂质或小分子二聚而富集。在一些实施例中,货物为嵌合的(例如嵌合蛋白或核酸)且包含介导与膜相关的蛋白质、脂质或小分子的结合或二聚化的域。所关注的膜相关的蛋白质包括但不限于具有与细胞膜稳定结合(例如结合、整合等)的域(即,膜结合域)的任何蛋白质,其中此类域可包括肉豆蔻酰基化域、法呢基化域、跨膜域等。所关注的特定膜相关的蛋白质包括但不限于:肉豆蔻酰基化蛋白质,例如p 60v-src等;法呢基化蛋白质,例如Ras、Rheb和CENP-E,F(通过结合至磷脂酰丝氨酸,一种细胞膜双层的脂质组分而结合特定脂质双层组分(例如膜联蛋白V)的蛋白质)等;膜锚蛋白;跨膜蛋白,例如转铁蛋白受体和其部分;和膜融合蛋白。在一些实施例中,膜相关的蛋白质含有第一二聚化域。第一二聚化域可以是例如直接结合至货物的第二二聚化域或通过二聚化介体结合至第二二聚化域的域。在一些实施例中,货物含有第二二聚化域。第二二聚化域可以是例如直接或通过二聚化介体与膜相关的蛋白质的第一二聚化域二聚(例如稳定结合,如通过非共价结合相互作用,直接或通过介体)的域。关于二聚化域,这些域是直接或通过二聚化介体参与结合事件的域,其中结合事件使得产生膜相关的蛋白质与靶蛋白的所需多聚(例如二聚)复合物。第一和第二二聚化域可以是同二聚体,使得它们由氨基酸的相同序列构成,或异二聚体,使得它们由氨基酸的不同序列构成。二聚化域可变化,其中所关注的域包括但不限于:靶生物分子的配体,如特异性结合至所关注的特定蛋白质的配体(例如蛋白质:蛋白质相互作用域),如SH2域、Paz域、RING域、转录活化子域、DNA结合域、酶催化域、酶调节域、酶次单位、定位至定义的细胞位置的域、定位域的识别域、如下URL所列的域:pawsonlab.mshri.on.ca/index.php?option=com_content&task=view&id=30&Itemid=63/等。在一些实施例中,第一二聚化域结合核酸(例如mRNA、miRNA、siRNA、DNA)且第二二聚化域为货物上存在的核酸序列(例如第一二聚化域为MS2且第二二聚化域为MS2 RNA的高亲和力结合环)。可使用起二聚化介体作用的任何方便的化合物。多种化合物,包括天然存在的和合成的物质可用作二聚化介体。选择二聚化介体的适用且易于观察或测量的标准包括:(a)配体为生理学上可接受的(即,对使用所述配体的细胞或动物没有异常毒性);(b)其具有合理的治疗剂量范围;(c)其可根据需要穿过细胞膜和其它膜(其中在一些情况下,其可能能够介导细胞外部的二聚化),和(D)以对于所需应用合理的亲和力结合至其所设计用于的嵌合蛋白的靶域。第一个必要标准是化合物在生理上是相对惰性的,但其具有二聚化介体活性。在一些情况下,配体将为非肽和非核酸。另外的二聚化域描述于例如US20170087087和US20170130197中,其各自以全文引用的方式并入本文中。

线粒体的特征

在一个方面,融合体,例如融合体的药物组合物或融合体的组合物包含衍生自线粒体的细胞来源的分离的线粒体(例如线粒体制剂)。

在另一方面,融合体,例如融合体的药物组合物或融合体的组合物包含衍生自线粒体的细胞来源的分离的、修饰的线粒体(例如修饰的线粒体制剂)。

在另一方面,融合体,例如融合体的药物组合物或融合体的组合物包含表达外源蛋白的线粒体(例如线粒体制剂)。

本文公开的包括线粒体(例如线粒体制剂)、方法和用途的另外的特征和实施例包括以下中的一个或多个。

在一些实施例中,线粒体(或组合物中的线粒体)具有以下特征中的一种或多种(2、3、4、5、6、7、8、9或更多种,例如全部):

外线粒体膜完整性,其中组合物在添加还原型细胞色素c后在4态速率下展现<20%(例如<15%、<10%、<5%、<4%、<3%、<2%、<1%)的耗氧速率增加;

遗传质量>80%,例如>85%、>90%、>95%、>97%、>98%、>99%,其中线粒体制剂的“遗传质量”意指对于表5中描述的所有基因座,映射至野生型等位基因的测序读段的%;

1-15,例如2-15、5-15、2-10、2-5、10-15的谷氨酸盐/苹果酸盐RCR 3/2;

1-30、1-20、2-20、5-20、3-15、10-30的谷氨酸盐/苹果酸盐RCR 3/4o;

1-15、2-15、5-15、1-10、10-15的丁二酸盐/鱼藤酮RCR 3/2;

1-30、1-20、2-20、5-20、3-15、10-30的丁二酸盐/鱼藤酮RCR 3/4o;

1-10(例如1-5)的棕榈酰肉碱和苹果酸盐RCR3/2 3态/2态呼吸控制比(RCR3/2);

心磷脂含量0.05-25(.1-20、.5-20、1-20、5-20、5-25、1-25、10-25、15-25)100*pmol/pmol总脂质;

基因组浓度0.001-2(例如.001-1、.01-1、.01-.1、.01-.05、.1-.2)mtDNAμg/mg蛋白质;或

>1000(例如>1,500、>2000、>2,500、>3,000、>4,000、>5000、>10,000、>25,000、>50,000、>100,000、>200,000、>500,000)的mtDNA/核DNA的相对比。

在一些实施例中,线粒体(或组合物中的线粒体)具有以下特征中的一种或多种(2、3、4、5、6或更多种):

组合物中的线粒体的平均尺寸为150-1500nm,例如200-1200nm,例如500-1200nm,例如175-950nm;

组合物中的线粒体具有1.1-6,例如1.5-5的多分散性(D90/D10)。在实施例中,来自培养的细胞来源(例如培养的成纤维细胞)的组合物中的线粒体具有2-5,例如2.5-5的多分散性(D90/D10);

外线粒体膜完整性,其中组合物在添加还原型细胞色素c后在4态速率下展现<20%(例如<15%、<10%、<5%、<4^、<3%、<2%、<1%)的耗氧速率增加;

1-8mOD/μg总蛋白,例如3-7mOD/μg总蛋白、1-5mOD/μg总蛋白的复合物I水平。在实施例中,来自培养的细胞来源(例如培养的成纤维细胞)的制剂的线粒体具有1-5mOD/μg总蛋白的复合物I水平;

0.05-5mOD/μg总蛋白,例如0.1-4mOD/μg总蛋白,例如0.5-3mOD/μg总蛋白的复合物II水平。在实施例中,来自培养的细胞来源(例如培养的成纤维细胞)的制剂的线粒体具有0.05-1mOD/μg总蛋白的复合物II水平;

1-30mOD/μg总蛋白,例如2-30、5-10、10-30mOD/μg总蛋白的复合物III水平。在实施例中,来自培养的细胞来源(例如培养的成纤维细胞)的线粒体具有1-5mOD/μg总蛋白的复合物III水平;

4-50mOD/μg总蛋白,例如5-50,例如10-50、20-50mOD/μg总蛋白的复合物IV水平。在实施例中,来自培养的细胞来源(例如培养的成纤维细胞)的线粒体具有3-10mOD/μg总蛋白的复合物IV水平;

基因组浓度0.001-2(例如.001-1、.01-1、.01-.1、.01-.05、.1-.2)mtDNA μg/mg蛋白质;

制剂的膜电位为-5至-200mV,例如-100至-200mV、-50至-200mV、-50至-75mV、-50至-100mV。在一些实施例中,制剂的膜电位为小于-150mV、小于-100mV、小于-75mV、小于-50mV,例如-5至-20mV;

小于100nmol羰基/mg线粒体蛋白(例如小于90nmol羰基/mg线粒体蛋白、小于80nmol羰基/mg线粒体蛋白、小于70nmol羰基/mg线粒体蛋白、小于60nmol羰基/mg线粒体蛋白、小于50nmol羰基/mg线粒体蛋白、小于40nmol羰基/mg线粒体蛋白、小于30nmol羰基/mg线粒体蛋白、小于25nmol羰基/mg线粒体蛋白、小于20nmol羰基/mg线粒体蛋白、小于15nmol羰基/mg线粒体蛋白、小于10nmol羰基/mg线粒体蛋白、小于5nmol羰基/mg线粒体蛋白、小于4nmol羰基/mg线粒体蛋白、小于3nmol羰基/mg线粒体蛋白的蛋白质羰基水平;

<20%mol/mol ER蛋白(例如>15%、>10%、>5%、>3%、>2%、>1%)mol/mol ER蛋白;

>5%mol/mol线粒体蛋白(在MitoCarta数据库(Calvo等人,NAR 2015l doi:10.1093/nar/gkv1003)中鉴别为线粒体的蛋白质),例如>10%、>15%、>20%、>25%、>30%、>35%、>40%、>50%、>55%、>60%、>65%、>70%、>75%、>80%、>90%mol/mol线粒体蛋白);

>0.05%mol/mol的MT-CO2、MT-ATP6、MT ND5和MT-ND6蛋白(组合)(例如>0.1%、>05%、>1%、>2%、>3%、>4%、>5%、>7、>8%、>9%、>10、>15%mol/mol的MT-CO2、MT-ATP6、MT-ND5和MT-ND6蛋白);

遗传质量>80%,例如>85%、>90%、>95%、>97%、>98%、>99%;

mtDNA/核DNA的相对比为>1000(例如>1,500、>2000、>2,500、>3,000、>4,000、>5000、>10,000、>25,000、>50,000、>100,000、>200,000、>500,000);

内毒素水平<0.2EU/μg蛋白质(例如<0.1、0.05、0.02、0.01EU/μg蛋白质);

基本上不存在外源性非人类血清;

1-15,例如2-15、5-15、2-10、2-5、10-15的谷氨酸盐/苹果酸盐RCR 3/2;

1-30、1-20、2-20、5-20、3-15、10-30的谷氨酸盐/苹果酸盐RCR 3/4o;

1-15、2-15、5-15、1-10、10-15的丁二酸盐/鱼藤酮RCR 3/2;

1-30、1-20、2-20、5-20、3-15、10-30的丁二酸盐/鱼藤酮RCR 3/4o;

0.05-100nmol/min/mg总蛋白(例如.05-50、.05-20、.5-10、.1-50、1-50、2-50、5-100、1-20nmol/min/mg总蛋白)的复合物I活性;

0.05-50nmol/min/mg总蛋白(例如.05-50、.05-20、.5-10、.1-50、1-50、2-50、5-50、1-20nmol/min/mg总蛋白)的复合物II活性;

0.05-20nmol/min/mg总蛋白(例如.05-50、.05-20、.5-10、.1-50、1-50、2-50、5-100、1-20nmol/min/mg总蛋白)的复合物III活性;

0.1-50nmol/min/mg总蛋白(例如.05-50、.05-20、.5-10、.1-50、1-50、2-50、5-50、1-20nmol/min/mg总蛋白)的复合物IV活性;

1-500nmol/min/mg总蛋白(例如10-500、10-250、10-200、100-500nmol/min/mg总蛋白)的复合物V活性;

0.01-50pmol H2O2/μg蛋白质/hr(例如.05-40、.05-25、1-20、2-20、.05-20、1-20pmol H2O2/μg蛋白质/hr)的活性氧类(ROS)生产水平;

0.05-5(例如.5-5、.5-2、1-5、1-4)mOD/min/μg总蛋白的柠檬酸合酶活性;

0.05-10(例如.1-10、.1-8、.5-8、.1-5、.5-5、.5-3、1-3)mOD/min/μg总蛋白的α酮戊二酸脱氢酶活性;

0.1-100(例如.5-50、1-100、1-50、1-25、1-15、5-15)mOD/min/μg总蛋白的肌酸激酶活性;

0.1-10(例如.5-10、.5-8、1-10、1-8、1-5、2-3)mOD/min/μg总蛋白的丙酮酸脱氢酶活性;

0.1-50(例如5-50、.1-2、.1-20、.5-30)mOD/min/μg总蛋白的乌头酸酶活性。在实施例中,来自血小板的线粒体制剂的乌头酸酶活性为.5-5mOD/min/μg总蛋白。在实施例中,来自培养的细胞,例如成纤维细胞的线粒体制剂的乌头酸酶活性为5-50mOD/min/μg总蛋白;

0.05-50(例如.05-40、.05-30、.05-10、.5-50、.5-25、.5-10、1-5)pmol O2/min/μg线粒体蛋白的最大脂肪酸氧化水平;

1-10(例如1-5)的棕榈酰肉碱和苹果酸盐RCR3/2 3态/2态呼吸控制比(RCR 3/2);

1-1000(例如10-1000、10-800、10-700、50-1000、100-1000、500-1000、10-400、100-800)nmol Om/min/mg蛋白/ΔGATP的电子传递链效率(以kcal/mol为单位);

50,000-2,000,000pmol/mg(例如50,000-1,000,000;50,000-500,000pmol/mg)的总脂质含量;

0.8-8(例如1-5、2-5、1-7、1-6)pmol/pmol的双键/总脂质比;

50-100(例如60-80、70-100、50-80)100*pmol/pmol的磷脂/总脂质比;

0.2-20(例如.5-15、.5-10、1-10、.5-10、1-5、5-20)100*pmol/pmol的磷酸鞘脂/总脂质比;

神经酰胺含量0.05-5(例如.1-5、.1-4、1-5、.05-3)100*pmol/pmol总脂质;

心磷脂含量0.05-25(.1-20、.5-20、1-20、5-20、5-25、1-25、10-25、15-25)100*pmol/pmol总脂质;

0.05-5(例如.1-5、1-5、.1-3、1-3、.05-2)100*pmol/pmol总脂质的溶血磷脂酰胆碱(LPC)含量;

0.005-2(例如.005-1、.05-2、.05-1)100*pmol/pmol总脂质的溶血磷脂酰乙醇胺(LPE)含量;

10-80(例如20-60、30-70、20-80、10-60m 30-50)100*pmol/pmol总脂质的磷脂酰胆碱(PC)含量;

0.1-10(例如.5-10、1-10、2-8、1-8)100*pmol/pmol总脂质的磷脂酰胆碱-醚(PCO-)含量;

磷脂酰乙醇胺(PE)含量1-30(例如2-20、1-20、5-20)100*pmol/pmol总脂质;

磷脂酰乙醇胺-醚(PE O-)含量0.05-30(例如.1-30、.1-20、1-20、.1-5、1-10、5-20)100*pmol/pmol总脂质;

磷脂酰肌醇(PI)含量0.05-15(例如.1-15、.1-10、1-10、.1-5、1-10、5-15)100*pmol/pmol总脂质;

磷脂酰丝氨酸(PS)含量0.05-20(例如.1-15、.1-20、1-20、1-10、.1-5、1-10、5-15)100*pmol/pmol总脂质;

鞘磷脂(SM)含量0.01-20(例如.01-15、.01-10、.5-20、.5-15、1-20、1-15、5-20)100*pmol/pmol总脂质;

三酰甘油(TAG)含量0.005-50(例如.01-50、.1-50、1-50、5-50、10-50、.005-30、.01-25、.1-30)100*pmol/pmol总脂质;

PE:LPE比30-350(例如50-250、100-200、150-300);

PC:LPC比30-700(例如50-300、50-250、100-300、400-700、300-500、50-600、50-500、100-500、100-400);

PE 18:n(n>0)含量0.5-20%(例如1-20%、1-10%、5-20%、5-10%、3-9%)pmolAA/pmol脂质类;

PE 20:4含量0.05-20%(例如1-20%、1-10%、5-20%、5-10%)pmol AA/pmol脂质类;

PC 18:n(n>0)含量5-50%(例如5-40%、5-30%、20-40%、20-50%)pmol AA/pmol脂质类;

PC 20:4含量1-20%(例如2-20%、2-15%、5-20%、5-15%)pmol AA/pmol脂质类。

在某些实施例中,线粒体(或组合物中的线粒体)在向受体细胞、组织或个体施用后具有以下特征中的一个或多个(对照可为阴性对照(例如尚未施用组合物的对照组织或个体),或施用之前的基线,例如施用组合物之前的细胞、组织或个体):

相对于对照增加受体细胞的基础呼吸至少10%(例如>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

组合物中的线粒体被至少1%(例如至少2%、5%、10%、20%、30%、40%、50%、60%、70%)的受体细胞吸收;

组合物中的线粒体被吸收并维持受体细胞中的膜电位;

组合物中的线粒体在受体细胞中存留至少6小时,例如至少12小时、18小时、24小时、2天、3天、4天、1周、2周、1个月、2个月、3个月、6个月;

增加受体细胞、组织或个体中的ATP水平(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

降低受体细胞、组织或个体中的细胞凋亡(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

降低受体细胞、组织或个体中的细胞脂质水平(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

增加受体细胞、组织或个体中的膜电位(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

增加受体细胞、组织或个体中的非偶联呼吸(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、509%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

增加受体细胞、组织或个体中的PI3K活性(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、509%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

降低受体细胞、组织或个体中的还原应激(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、509%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

减少个体的细胞、组织(例如目标个体的血清)中的活性氧类(例如H2O2)(例如至少5%、10%、15%、20%、25%、30%、35%、40%、45%、509%、60%、70%、80%、90%或更多,例如相比于参考值,例如对照值,例如未处理的对照);

相对于对照降低受体细胞的细胞脂质水平至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加受体细胞的非偶联呼吸至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照,将受体细胞中的线粒体通透性转换孔(MPTP)形成降低至少5%,且增加不超过10%;

相对于对照增加受体细胞中的Akt水平至少10%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低受体细胞中的总NAD/NADH比至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低受体细胞中的ROS水平至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体中的缩短分数至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体的舒张末期容积至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低患有心肌缺血的个体的收缩末期容积至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低缺血性心肌梗塞面积至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体的心搏出量至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体的射血分数至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体的心输出量至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照增加患有心肌缺血的个体的心脏指数至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低患有心肌缺血的个体的血清CKNB水平至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低患有心肌缺血的个体中的血清cTnI水平至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低患有心肌缺血的个体中的血清过氧化氢至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

相对于对照降低个体中的血清胆固醇水平和/或三酸甘油酯至少5%(例如>10%、>15%、>20%、>30%、>40%、>50%、>60%、>70%、>80%、>90%);

在一些实施例中,融合体包含具有以下特征中的一个或多个的线粒体,例如从线粒体来源分离的线粒体:

组合物中的线粒体具有150-1500nm的平均尺寸;

组合物中的线粒体具有1.1至6的多分散性(D90/D10);

组合物中的线粒体的外线粒体膜完整性在添加还原型细胞色素c后在4态速率下展现<20%的耗氧速率增加;

1-8mOD/μg总蛋白的复合物I水平;

0.05-5mOD/μg总蛋白的复合物II水平;

1-30mOD/μg总蛋白的复合物III水平;

4-50mOD/μg总蛋白的复合物IV水平;

基因组浓度0.001-2mtDNA μg/mg蛋白质;和/或

组合物中的线粒体的膜电位为-5至-200mV。

在一些实施例中,融合体包含具有以下特征中的一个或多个的线粒体,例如从线粒体来源分离的线粒体:

小于100nmol羰基/mg线粒体蛋白的蛋白质羰基水平。

<20%mol/mol ER蛋白

>5%mol/mol线粒体蛋白(MitoCarta);

>0.05%mol/mol的MT-CO2、MT-ATP6、MT-ND5和MT-ND6蛋白;

遗传质量>80%;

mtDNA/核DNA的相对比>1000;

内毒素水平<0.2EU/μg蛋白质;和/或

基本上不存在外源性非人类血清。

在一些实施例中,融合体包含具有以下特征中的一个或多个的线粒体,例如从线粒体来源分离的线粒体:

1-15的谷氨酸盐/苹果酸盐RCR 3/2;

1-30的谷氨酸盐/苹果酸盐RCR 3/4o;

1-15的丁二酸盐/鱼藤酮RCR 3/2;

1-30的丁二酸盐/鱼藤酮RCR 3/4o;

0.05-100nmol/min/mg总蛋白的复合物I活性;

0.05-50nmol/min/mg总蛋白的复合物II活性;

0.05-20nmol/min/mg总蛋白的复合物III活性;

0.1-50nmol/min/mg总蛋白的复合物IV活性;

1-500nmol/min/mg总蛋白的复合物V活性;

0.01-50pmol H2O2/μg蛋白质/hr的活性氧类(ROS)生产水平;

0.05-5mOD/min/μg总蛋白的柠檬酸合酶活性;

0.05-10mOD/min/μg总蛋白的α酮戊二酸脱氢酶活性;

0.1-100mOD/min/μg总蛋白的肌酸激酶活性;

0.1-10mOD/min/μg总蛋白的丙酮酸脱氢酶活性;

0.1-50mOD/min/μg总蛋白的乌头酸酶活性;

0.05-50pmol O2/min/μg线粒体蛋白的最大脂肪酸氧化水平;

1-10的棕榈酰肉碱和苹果酸盐RCR3/2 3态/2态呼吸控制比(RCR 3/2);和/或

1-1000nmol O2/min/mg蛋白质/ΔGATP的电子传递链效率(以kcal/mol为单位)。

在一些实施例中,融合体包含具有以下特征中的一个或多个的线粒体,例如从线粒体来源分离的线粒体:

50,000-2,000,000pmol/mg的总脂质含量;

0.8-8pmol/pmol的双键/总脂质比;

50-100 100*pmol/pmol的磷脂/总脂质比;

0.2-20 100*pmol/pmol的磷酸鞘脂/总脂质比;

神经酰胺含量0.05-5 100*pmol/pmol总脂质;

心磷脂含量0.05-25 100*pmol/pmol总脂质;

0.05-5 100*pmol/pmol总脂质的溶血磷脂酰胆碱(LPC)含量;

0.005-2 100*pmol/pmol总脂质的溶血磷脂酰乙醇胺(LPE)含量;

10-80 100*pmol/pmol总脂质的磷脂酰胆碱(PC)含量;

磷脂酰胆碱-醚(PC O-)含量0.1-10 100*pmol/pmol总脂质;

磷脂酰乙醇胺(PE)含量1-30 100*pmol/pmol总脂质;

磷脂酰乙醇胺-醚(PE O-)含量0.05-30 100*pmol/pmol总脂质;

磷脂酰肌醇(PI)含量0.05-15 100*pmol/pmol总脂质;

磷脂酰丝氨酸(PS)含量0.05-20 100*pmol/pmol总脂质;

鞘磷脂(SM)含量0.01-20 100*pmol/pmol总脂质;

三酰甘油(TAG)含量0.005-50 100*pmol/pmol总脂质;

PE:LPE比30-350;

PC:LPC比30-700;

PE 18:n(n>0)含量0.5-20%pmol AA/pmol脂质类;

PE 20:4含量0.05-20%pmol AA/pmol脂质类;

PC 18:n(n>0)含量5-50%pmol AA/pmol脂质类;和/或

PC 20:4含量1-20%。

在一些实施例中,融合体包含具有以下特征中的一个或多个的线粒体,例如从线粒体来源分离的线粒体:

增加受体细胞的基础呼吸至少10%;

组合物中的线粒体被至少1%的受体细胞吸收;

组合物中的线粒体被吸收并维持受体细胞中的膜电位;

组合物中的线粒体存留于受体细胞中至少6小时;

降低受体细胞的细胞脂质水平至少5%;

增加受体细胞的非偶联呼吸至少5%;

将受体细胞中的线粒体通透性转换孔(MPTP)形成降低至少5%,且增加不超过10%;

增加受体细胞中的Akt水平至少10%;

降低受体细胞中的总NAD/NADH比至少5%;和/或

降低受体细胞中的ROS水平至少5%。

在一些实施例中,包含线粒体的融合体另外具有以下特征中的一个或多个:

使患有心肌缺血的个体的缩短分数增加至少5%;

使患有心肌缺血的个体的舒张末期体积增加至少5%;

使患有心肌缺血的个体的收缩末期体积降低至少5%;

使缺血性心肌梗塞面积降低至少5%;

使患有心肌缺血的个体的心搏出量增加至少5%;

使患有心肌缺血的个体的射血分数增加至少5%;

使患有心肌缺血的个体的心输出量增加至少5%;

使患有心肌缺血的个体的心脏指数增加至少5%;

使患有心肌缺血的个体的血清CKNB水平降低至少5%;

使患有心肌缺血的个体的血清cTnI水平降低至少5%;和/或

使患有心肌缺血的个体的血清过氧化氢降低至少5%。

在实施例中,包含线粒体的融合体稳定至少6小时、12小时、24小时、48小时、72小时、96小时、5天、7天、10天、14天、21天、30天、45天、60天、90天、120天、180天或更长时间(例如在4℃、0℃、-4℃、或-20℃、-80℃下)。

在实施例中,包含药剂(例如线粒体)的融合体可包含例如天然、合成或工程化的囊封材料,如基于脂质的材料、囊泡、外泌体、脂筏、网格蛋白包被的囊泡或血小板(线粒体粒子)、MSC或星形胶质细胞微囊泡膜。

在实施例中,组合物中的包含线粒体的融合体为150-20,000μg蛋白质/ml;150-15,000μg/ml;200-15,000μg/ml;300-15,000μg/ml;500-15,000μg/ml;200-10,000μg/ml;200-5,000μg/ml;300-10,000μg/ml;>200μg/ml;>250μg/ml;>300μg/ml;>350μg/ml;>400μg/ml;>450μg/ml;>500μg/ml;>600μg/ml;>700μg/ml;>800μg/ml;>900μg/ml;>1mg/ml;>2mg/ml;>3mg/ml;>4mg/ml;>5mg/ml;>6mg/ml;>7mg/ml;>8mg/ml;>9mg/ml;>10mg/ml;>11mg/ml;>12mg/ml;>14mg/ml;>15mg/ml(且例如≤20mg/ml)。

在实施例中,包含线粒体的融合体在受体动物,例如受体哺乳动物,如人类中不产生非所需免疫反应(例如不显著增加受体中IL-1-β、IL-6、GM-CSF、TNF-α的水平或***尺寸)。

对货物的修饰包括例如如国际申请PCT/US16/64251中所述的对线粒体或线粒体来源的修饰。在一些实施例中,融合体包含使用本文所述的制备药物组合物的方法制成的线粒体。

在一些实施例中,本文所述的融合体组合物,例如包含线粒体或线粒体的融合体组合物能够具有以下中的一个或多个(例如2、3或4个):

a)增加靶细胞中的最大呼吸,例如其中最大呼吸的增加为至少10%、20%、30%、40%、50%、60%、70%、75%、80%、90%、2倍、3倍、4倍或5倍,或10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%、80%-90%、90%-100%、1倍-2倍、2倍-3倍、3倍-4倍或4倍-5倍;

b)增加靶细胞中的备用呼吸容量,例如其中备用呼吸容量的增加为至少10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍或5倍,或10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%、80%-90%、90%-100%、1倍-2倍、2倍-3倍、3倍-4倍或4倍-5倍;

c)刺激靶细胞中的线粒体生物发生,例如其中刺激线粒体生物发生包含增加线粒体生物量至少10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍或5倍,或10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%、80%-90%、90%-100%、1倍-2倍、2倍-3倍、3倍-4倍或4倍-5倍;或

d)调节(例如刺激或抑制)靶细胞中核基因的转录,例如其中核基因的转录水平的变化为至少10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、4倍或5倍,或10%-20%、20%-30%、30%-40%、40%-50%、50%-60%、60%-70%、70%-80%、80%-90%、90%-100%、1倍-2倍、2倍-3倍、3倍-4倍或4倍-5倍。

免疫原性

在本文所述的任何方面的一些实施例中,融合体组合物为基本上非免疫原性的。免疫原性可以被定量,例如如本文所述。

在一些实施例中,融合体与靶细胞融合以产生受体细胞。在一些实施例中,评估已融合至一种或多种融合体的受体细胞的免疫原性。在实施例中,关于细胞表面上抗体的存在对受体细胞进行分析,例如通过用抗IgM抗体染色。在其它实施例中,通过PBMC细胞溶解分析来评估免疫原性。在实施例中,将受体细胞与外周血单核细胞(PBMC)一起培育且接着评估PBMC对细胞的溶解。在其它实施例中,通过自然杀手(NK)细胞溶解分析来评估免疫原性。在实施例中,将受体细胞与NK细胞一起培育且接着评估NK细胞对细胞的溶解。在其它实施例中,通过CD8+T细胞溶解分析来评估免疫原性。在实施例中,将受体细胞与CD8+T细胞一起培育且接着评估CD8+T细胞对细胞的溶解。

在一些实施例中,融合体组合物具有细胞的膜对称性,所述细胞为或已知为基本上非免疫原性的,例如干细胞、间充质干细胞、诱导多能干细胞、胚胎干细胞、塞特利氏细胞(sertoli cell)或视网膜色素上皮细胞。在一些实施例中,融合体的免疫原性比干细胞、间充质干细胞、诱导多能干细胞、胚胎干细胞、塞特利氏细胞或视网膜色素上皮细胞的免疫原性高不超过5%、10%、20%、30%、40%或50%,如根据本文所述的分析所测量。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,融合体组合物包含升高水平的免疫抑制剂。在一些实施例中,升高的水平为至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、5倍、10倍、20倍、50倍或100倍。在一些实施例中,融合体组合物包含参考细胞中不存在的免疫抑制剂。在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,融合体组合物包含降低水平的免疫活化剂。在一些实施例中,降低的水平为相比于参考细胞的至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、98%或99%。在一些实施例中,免疫活化剂基本上不存在于融合体中。

在一些实施例中,融合体组合物包含膜,所述膜具有与源细胞,例如基本上非免疫原性的源细胞基本上类似(例如根据蛋白质组学所测量)的组成。在一些实施例中,融合体组合物包含膜,所述膜包含源细胞的膜蛋白的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或100%。在一些实施例中,融合体组合物包含膜,所述膜包含以源细胞膜上的膜蛋白的表达水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、99%或100%表达的膜蛋白。

在一些实施例中,融合体组合物,或衍生融合体组合物的源细胞具有以下特征中的1、2、3、4、5、6、7、8、9、10、11、12个或更多个:

a.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或HeLa细胞,MHC I类或MHC II类的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

b.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或本文所述的参考细胞,包括但不限于以下的一种或多种协同刺激蛋白的表达为小于50%、40%、30%、20%、15%、10%或5%或更小:LAG3、ICOS-L、ICOS、Ox40L、OX40、CD28、B7、CD30、CD30L 4-1BB、4-1BBL、SLAM、CD27、CD70、HVEM、LIGHT、B7-H3或B7-H4;

c.抑制巨噬细胞吞噬的表面蛋白(例如CD47)的表达,例如通过本文所述的方法可检测的表达,例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,抑制巨噬细胞吞噬的表面蛋白(例如CD47)的表达为大于1.5倍、2倍、3倍、4倍、5倍、10倍或更大;

d.可溶性免疫抑制细胞因子(例如IL-10)的表达,例如通过本文所述的方法可检测的表达,例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,可溶性免疫抑制细胞因子(例如IL-10)的表达为大于1.5倍、2倍、3倍、4倍、5倍、10倍或更大;

e.可溶性免疫抑制蛋白(例如PD-L1)的表达,例如通过本文所述的方法可检测的表达,例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,可溶性免疫抑制蛋白(例如PD-L1)的表达为大于1.5倍、2倍、3倍、4倍、5倍、10倍或更大;

f.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或U-266细胞,可溶性免疫刺激细胞因子,例如IFN-γ或TNF-a的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

g.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或A549细胞或SK-BR-3细胞,内源性免疫刺激抗原,例如Zg16或Hormad1的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

h.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,HLA-E或HLA-G的表达,例如通过本文所述的方法可检测的表达;

i.表面糖基化分布,例如含有唾液酸,其用以例如抑制NK细胞活化;

j.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,TCRα/β的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

k.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或HeLa细胞,ABO血型的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

l.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,次要组织相容性抗原(MHA)的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;或

m.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,具有少于10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或更少的线粒体MHA,或具有不可检测的线粒体MHA。

在实施例中,协同刺激蛋白为4-1BB、B7、SLAM、LAG3、HVEM或LIGHT,且参考细胞为HDLM-2。在一些实施例中,协同刺激蛋白为BY-H3且参考细胞为HeLa。在一些实施例中,协同刺激蛋白为ICOSL或B7-H4,且参考细胞为SK-BR-3。在一些实施例中,协同刺激蛋白为ICOS或OX40,且参考细胞为MOLT-4。在一些实施例中,协同刺激蛋白为CD28,且参考细胞为U-266。在一些实施例中,协同刺激蛋白为CD30L或CD27,且参考细胞为Daudi。

在一些实施例中,融合体组合物基本上不引发免疫系统,例如先天免疫系统的免疫原性应答。在实施例中,免疫原性应答可以被定量,例如如本文所述。在一些实施例中,先天免疫系统的免疫原性应答包含先天免疫细胞的应答,所述先天免疫细胞包括但不限于NK细胞、巨噬细胞、嗜中性粒细胞、嗜碱性粒细胞、嗜酸性粒细胞、树突状细胞、肥大细胞或γ/δT细胞。在一些实施例中,先天免疫系统的免疫原性应答包含补体系统的应答,所述补体系统包括可溶性血液组分和膜结合组分。

在一些实施例中,融合体组合物基本上不引发免疫系统,例如适应性免疫系统的免疫原性应答。在实施例中,免疫原性应答可以被定量,例如如本文所述。在一些实施例中,适应性免疫系统的免疫原性应答包含适应性免疫细胞的免疫原性应答,包括但不限于T淋巴细胞(例如CD4 T细胞、CD8 T细胞和或γ-δT细胞)或B淋巴细胞的数目或活性的变化,例如增加。在一些实施例中,适应性免疫系统的免疫原性应答包括增加的可溶血液组分水平,包括但不限于细胞因子或抗体(例如IgG、IgM、IgE、IgA或IgD)的数目或活性的变化,例如增加。

在一些实施例中,融合体组合物被修饰以具有降低的免疫原性。免疫原性可以被定量,例如如本文所述。在一些实施例中,融合体组合物的免疫原性比参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞的免疫原性低小于5%、10%、20%、30%、40%或50%。

在本文所述的任何方面的一些实施例中,融合体组合物衍生自源细胞,例如具有修饰的基因组(例如使用本文所述的方法修饰)的哺乳动物细胞,以降低(例如减少)免疫原性。免疫原性可以被定量,例如如本文所述。

在一些实施例中,融合体组合物衍生自哺乳动物细胞,所述哺乳动物细胞耗尽以下中的一、二、三、四、五、六、七个或更多个(例如将其基因敲除):

a.MHC I类、MHC II类或MHA;

b.一种或多种协同刺激蛋白,包括但不限于:LAG3、ICOS-L、ICOS、Ox40L、OX40、CD28、B7、CD30、CD30L 4-1BB、4-1BBL、SLAM、CD27、CD70、HVEM、LIGHT、B7-H3或B7-H4;

c.可溶性免疫刺激细胞因子,例如IFN-γ或TNF-a;

d.内源性免疫刺激抗原,例如Zg16或Hormad1;

e.T细胞受体(TCR);

f.编码ABO血型的基因,例如ABO基因;

g.驱动免疫活化的转录因子,例如NFkB;

h.控制MHC表达的转录因子,例如II类反式活化子(CIITA)、Xbox 5的调节因子(RFX5)、RFX相关蛋白(RFXAP)或RFX锚蛋白重复序列(RFXANK;也称为RFXB);或

i.TAP蛋白,例如TAP2、TAP1或TAPBP,其降低MHC I类表达。

在一些实施例中,融合体衍生自具有遗传修饰的源细胞,所述遗传修饰使得免疫抑制剂,例如以下中的一种、两种、三种或更多种的表达增加(例如其中在遗传修饰之前,细胞不表达因子):

a.抑制巨噬细胞吞噬的表面蛋白,例如CD47;例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞增加的CD47的表达;

b.可溶性免疫抑制细胞因子,例如IL-10,例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞增加的IL-10的表达;

c.可溶性免疫抑制蛋白,例如PD-1、PD-L1、CTLA4或BTLA;例如相比于参考细胞,例如另外与细胞来源类似的未修饰的细胞,或Jurkat细胞增加的免疫抑制蛋白的表达;

d.耐受蛋白,例如ILT-2或ILT-4激动剂,例如HLA-E或HLA-G或任何其它内源性ILT-2或ILT-4激动剂,例如相比于参考细胞,例如另外与细胞来源类似的未修饰的细胞,或Jurkat细胞增加的HLA-E、HLA-G、ILT-2或ILT-4的表达;或

e.抑制补体活性的表面蛋白,例如补体调节蛋白,例如结合衰变加速因子的蛋白(DAF,CD55),例如因子H(FH)样蛋白-1(FHL-1),例如C4b结合蛋白(C4BP),例如补体受体1(CD35),例如膜辅因子蛋白(MCP,CD46),例如Profectin(CD59),例如抑制经典和旁路补体途径CD/C5转化酶的蛋白,例如调节MAC装配的蛋白;例如相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞增加的补体调节蛋白的表达。

在一些实施例中,增加的表达水平为相比于参考细胞高至少5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、2倍、3倍、5倍、10倍、20倍、50倍或100倍。

在一些实施例中,融合体衍生自源细胞,所述源细胞被修饰以具有降低的免疫活化剂的表达,例如以下中的一、二、三、四、五、六、七、八个或更多个:

a.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或HeLa细胞,MHC I类或MHC II类的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

b.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或本文所述的参考细胞,包括但不限于以下的一种或多种协同刺激蛋白的表达为小于50%、40%、30%、20%、15%、10%或5%或更小:LAG3、ICOS-L、ICOS、Ox40L、OX40、CD28、B7、CD30、CD30L 4-1BB、4-1BBL、SLAM、CD27、CD70、HVEM、LIGHT、B7-H3或B7-H4;

c.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或U-266细胞,可溶性免疫刺激细胞因子,例如IFN-γ或TNF-a的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

d.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或A549细胞或SK-BR-3细胞,内源性免疫刺激抗原,例如Zg16或Hormad1的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

e.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,T细胞受体(TCR)的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

f.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或HeLa细胞,ABO血型的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;

g.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,驱动免疫活化的转录因子,例如NFkB的表达为小于50%、40%、30%、20%、15%、10%或5%或更小

h.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或Jurkat细胞,控制MHC表达的转录因子,例如II类反式活化子(CIITA)、Xbox 5的调节因子(RFX5)、RFX相关蛋白(RFXAP)或RFX锚蛋白重复序列(RFXANK;也称为RFXB)的表达为小于50%、40%、30%、20%、15%、10%或5%或更小;或

i.相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,或HeLa细胞,降低MHC I类表达的TAP蛋白,例如TAP2、TAP1或TAPBP的表达为小于50%、40%、30%、20%、15%、10%或5%或更小。

在一些实施例中,相比于未修饰的细胞,例如未修饰的间充质干细胞,衍生自哺乳动物细胞(例如间充质干细胞),使用表达shRNA的慢病毒修饰以降低MHC I类表达的融合体组合物具有较低的MHC I类表达。在一些实施例中,相比于未修饰的细胞,例如未修饰的间充质干细胞,衍生自哺乳动物细胞(例如间充质干细胞),使用表达HLA-G的慢病毒修饰以增加HLA-G表达的融合体组合物具有增加的HLA-G表达。

在一些实施例中,融合体组合物衍生自基本上没有免疫原性的源细胞,例如哺乳动物细胞,其中源细胞以0pg/mL至>0pg/mL的水平刺激(例如诱导)T细胞IFN-γ分泌,例如通过IFN-γELISPOT分析在体外所分析。

在一些实施例中,融合体组合物衍生自源细胞,例如哺乳动物细胞,其中哺乳动物细胞来自用免疫抑制剂,例如糖皮质激素(例如***)、细胞生长抑制剂(例如甲氨喋呤)、抗体(例如莫罗单抗(Muromonab)-CD3)或免疫亲和素调节剂(例如环孢菌素或雷帕霉素)处理的细胞培养物。

在一些实施例中,融合体组合物衍生自源细胞,例如哺乳动物细胞,其中哺乳动物细胞包含外源药剂,例如治疗剂。

在一些实施例中,融合体组合物衍生自源细胞,例如哺乳动物细胞,其中哺乳动物细胞为重组细胞。

在一些实施例中,融合体衍生自哺乳动物细胞,所述哺乳动物细胞经遗传修饰以表达病毒逃避蛋白,例如hCMV US2或US11。

在一些实施例中,用聚合物,例如降低免疫原性和免疫介导的清除的生物相容性聚合物(例如PEG)来共价或非共价修饰融合体的表面,或衍生融合体的哺乳动物细胞的表面。

在一些实施例中,用唾液酸,例如含有NK抑制性聚糖表位的包含唾液酸的含糖聚合物来共价或非共价修饰融合体的表面,或衍生融合体的哺乳动物细胞的表面。

在一些实施例中,用酶处理,例如用糖苷酶,例如α-N-乙酰氨基半乳糖苷酶处理融合体的表面,或衍生融合体的哺乳动物细胞的表面以去除ABO血型

在一些实施例中,用酶处理融合体的表面,或衍生融合体的哺乳动物细胞的表面以产生,例如诱导与受体的血型匹配的ABO血型的表达。

评估免疫原性的参数

在一些实施例中,融合体组合物衍生自源细胞,例如哺乳动物细胞,其基本上没有免疫原性,或被修饰(例如使用本文所述的方法修饰)以降低免疫原性。源细胞和融合体组合物的免疫原性可通过本文所述的任何分析来确定。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的体内移植物存活率增加,例如增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一些实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量体内移植物存活率的分析来确定移植物存活率。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的畸胎瘤形成增加,例如增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一些实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量畸胎瘤形成的分析来确定畸胎瘤形成。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的畸胎瘤存活率增加,例如增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一些实施例中,融合体组合物在畸胎瘤存活率分析中存活一或多天。在一些实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量畸胎瘤存活率的分析来确定畸胎瘤存活率。在一个实施例中,如实例中所述,通过固定组织(例如冷冻或***固定)的成像分析,例如IHC染色、荧光染色或H&E来测量畸胎瘤形成。在一些实施例中,固定组织可用以下抗体中的任何一种或全部来染色:抗人类CD3、抗人类CD4或抗人类CD8。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的向移植物或畸胎瘤中的CD8+T细胞浸润降低,例如降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一个实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量CD8+T细胞浸润的分析,例如组织学分析来确定CD8 T细胞浸润。在一些实施例中,衍生自融合体组合物的畸胎瘤在0%、0.1%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的组织学组织切片的50×像场中具有CD8+T细胞浸润。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的向移植物或畸胎瘤中的CD4+T细胞浸润降低,例如降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一些实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量CD4+T细胞浸润的分析,例如组织学分析来确定CD4 T细胞浸润。在一些实施例中,衍生自融合体组合物的畸胎瘤在0%、0.1%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的组织学组织切片的50×像场中具有CD4+T细胞浸润。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的向移植物或畸胎瘤中的CD3+NK细胞浸润降低,例如降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一个实施例中,在适当动物模型,例如本文所述的动物模型中通过如本文所述的测量CD3+NK细胞浸润的分析,例如组织学分析来确定CD3+NK细胞浸润。在一些实施例中,衍生自融合体组合物的畸胎瘤在0%、0.1%、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或100%的组织学组织切片的50×像场中具有CD3+NK T细胞浸润。

在一些实施例中,相比于在将参考细胞,例如另外与源细胞类似的未修饰的细胞一次或多次植入至适当动物模型,例如本文所述的动物模型中之后的体液反应,融合体组合物的免疫原性降低,如根据在将衍生的融合体一次或多次植入至适当动物模型,例如本文所述的动物模型中之后的体液反应的降低所测量。在一些实施例中,通过抗细胞抗体滴度,例如抗融合体抗体滴度,例如通过ELISA来测量血清样品中的体液反应的降低。在一些实施例中,相比于来自施用未修饰的细胞的动物的血清样品,来自施用融合体组合物的动物的血清样品的抗细胞抗体滴度降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一些实施例中,来自施用融合体组合物的动物的血清样品具有增加的抗细胞抗体滴度,例如与基线相比增加了1%、2%、5%、10%、20%、30%或40%,例如其中基线是指在施用融合体组合物之前来自相同动物的血清样品。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的巨噬细胞吞噬作用降低,例如巨噬细胞吞噬作用降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中巨噬细胞吞噬作用的降低是通过体外分析吞噬作用指数来确定,例如如实例82中所述。在一些实施例中,当在巨噬细胞吞噬作用的体外分析中与巨噬细胞一起培育时,融合体组合物具有0、1、10、100或更大的吞噬作用指数,例如根据实例82的分析所测量。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞或间充质干细胞,源细胞的细胞毒性介导的通过PBMC的细胞溶解降低,例如细胞溶解降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,例如使用实例83的分析。在实施例中,源细胞表达外源HLA-G。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的NK介导的细胞溶解降低,例如NK介导的细胞溶解降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中通过铬释放分析或铕释放分析在体外分析NK介导的细胞溶解。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的CD8+T细胞介导的细胞溶解降低,例如CD8 T细胞介导的细胞溶解降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中通过铬释放分析或铕释放分析在体外分析CD8 T细胞介导的细胞溶解。在实施例中,如实例85中所述地测量活化和/或增殖。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的CD4+T细胞增殖和/或活化降低,例如降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中在体外分析CD4T细胞增殖(例如修饰或未修饰的哺乳动物源细胞,和CD4+T细胞与CD3/CD28戴诺珠粒的共培养分析),例如如实例86中所述。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的T细胞IFN-γ分泌降低,例如T细胞IFN-γ分泌降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中在体外分析T细胞IFN-γ分泌,例如通过IFN-γELISPOT。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的免疫原性细胞因子分泌降低,例如免疫原性细胞因子分泌降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用ELISA或ELISPOT在体外分析免疫原性细胞因子分泌。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物使得免疫抑制细胞因子的分泌增加,例如免疫抑制细胞因子的分泌增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用ELISA或ELISPOT在体外免疫抑制细胞因子的分泌。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的HLA-G或HLA-E的表达增加,例如HLA-G或HLA-E的表达增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用流式细胞测量术,例如FACS在体外分析HLA-G或HLA-E的表达。在一些实施例中,融合体组合物衍生自源细胞,所述源细胞经修饰以具有增加的HLA-G或HLA-E的表达,例如相比于未修饰的细胞,例如HLA-G或HLA-E的表达增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用流式细胞测量术,例如FACS在体外分析HLA-G或HLA-E的表达。在一些实施例中,衍生自具有增加的HLA-G表达的修饰的细胞的融合体组合物在畸胎瘤形成分析,例如如本文所述的畸胎瘤形成分析中展现降低的免疫原性,例如根据降低的免疫细胞浸润所测量。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的T细胞抑制剂配体(例如CTLA4、PD1、PD-L1)的表达增加,例如T细胞抑制剂配体的表达增加1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用流式细胞测量术,例如FACS在体外分析T细胞抑制剂配体的表达。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞,融合体组合物的协同刺激配体的表达降低,例如协同刺激配体的表达降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用流式细胞测量术,例如FACS在体外分析协同刺激配体的表达。

在一些实施例中,相比于参考细胞,例如另外与源细胞类似的未修饰的细胞或HeLa细胞,融合体组合物的MHC I类或MHC II类的表达降低,例如MHC I类或MHC II类的表达降低1%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大,其中使用流式细胞测量术,例如FACS在体外分析MHC I类或II类的表达。

在一些实施例中,融合体组合物衍生自基本上非免疫原性的细胞来源,例如哺乳动物细胞来源。在一些实施例中,免疫原性可以被定量,例如如本文所述。在一些实施例中,哺乳动物细胞来源包含以下特征中的任何一个、全部或组合:

a.其中源细胞是从自体细胞来源获得的;例如从将接受(例如施用)融合体组合物的受体获得的细胞;

b.其中源细胞是从与受体,例如将接受(例如施用)融合体组合物的本文所述的受体具有匹配(例如相同)性别的同种异体细胞来源获得的;

c.其中源细胞是从HLA与受体的HLA匹配(例如在一个或多个等位基因处)的同种异体细胞来源获得的;

d.其中源细胞是从作为HLA纯合子的同种异体细胞来源获得的;

e.其中源细胞是从缺乏(或与参考细胞相比水平降低)MHC I类和II类的同种异体细胞来源获得的;或

f.其中源细胞是从已知基本上非免疫原性的细胞来源,包括但不限于干细胞、间充质干细胞、诱导多能干细胞、胚胎干细胞、塞特利氏细胞或视网膜色素上皮细胞获得的。

在一些实施例中,待施用融合体组合物的个体具有或已知具有与融合体反应的预先存在的抗体(例如IgG或IgM),或关于所述抗体进行测试。在一些实施例中,待施用融合体组合物的个体不具有可检测水平的与融合体反应的预先存在的抗体。抗体的测试描述于例如实例78中。

在一些实施例中,已接受融合体组合物的个体具有或已知具有与融合体反应的抗体(例如IgG或IgM),或关于所述抗体进行测试。在一些实施例中,已接受融合体组合物(例如至少一次、两次、三次、四次、五次或更多次)的个体不具有可检测水平的与融合体反应的抗体。在实施例中,抗体水平在两个时间点之间不升高超过1%、2%、5%、10%、20%或50%,第一时间点在第一次施用融合体之前,且第二时间点在一次或多次施用融合体之后。抗体的测试描述于例如实例79中。

其它治疗剂

在一些实施例中,向个体,例如受体,例如本文所述的受体共同施用融合体组合物与其它药剂,例如治疗剂。在一些实施例中,共同施用的治疗剂为免疫抑制剂,例如糖皮质激素(例如***)、细胞生长抑制剂(例如甲氨蝶呤)、抗体(例如莫罗单抗-CD3)或免疫亲和素调节剂(例如环孢菌素或雷帕霉素)。在实施例中,免疫抑制剂降低免疫介导的融合体清除。在一些实施例中,融合体组合物与免疫刺激剂,例如佐剂、白介素、细胞因子或趋化因子共同施用。

在一些实施例中,在相同时间施用,例如同时施用融合体组合物和免疫抑制剂。在一些实施例中,在施用免疫抑制剂之前施用融合体组合物。在一些实施例中,在施用免疫抑制剂之后施用融合体组合物。

在一些实施例中,免疫抑制剂为小分子,如布洛芬、对乙酰氨基酚、环孢灵、他克莫司、雷帕霉素、霉酚酸酯、环磷酰胺、糖皮质激素、西罗莫司、硫唑嘌呤或甲氨蝶呤。

在一些实施例中,免疫抑制剂为抗体分子,包括但不限于:莫罗诺单抗(muronomab)(抗CD3)、达利珠单抗(Daclizumab)(抗IL12)、巴利昔单抗(Basiliximab)、英利昔单抗(Infliximab)(抗TNFa)或利妥昔单抗(rituximab)(抗CD20)。

在一些实施例中,相比于单独施用融合体组合物,共同施用融合体组合物与免疫抑制剂使得融合体组合物在个体中的持久性增强。在一些实施例中,相比于单独施用时融合体组合物的持久性,共同施用的融合体组合物的持久性增强至少10%、20%、30%、40%、50%、60%、70%、80%、90%或更久。在一些实施例中,相比于单独施用时融合体组合物的持久性,共同施用的融合体组合物的持久性增强至少1、2、3、4、5、6、7、10、15、20、25或30天或更久。

递送

在一些实施例中,在递送融合体之前、同时或之后向靶细胞或组织递送融合剂(例如蛋白质、脂质或化学融合剂)或融合剂结合搭配物。

在一些实施例中,在递送融合体之前、同时或之后向非靶细胞或组织递送融合剂(例如蛋白质、脂质或化学融合剂)或融合剂结合搭配物。

在一些实施例中,在递送融合体之前、同时或之后向靶细胞或组织递送编码融合剂(例如蛋白质或脂质融合剂)或融合剂结合搭配物的核酸。

在一些实施例中,在递送融合体之前、同时或之后向靶细胞或组织递送上调或下调融合剂(例如蛋白质、脂质或化学融合剂)或融合剂结合搭配物的表达的多肽、核酸、核糖核蛋白或小分子。

在一些实施例中,在递送融合体之前、同时或之后向非靶细胞或组织递送上调或下调融合剂(例如蛋白质、脂质或化学融合剂)或融合剂结合搭配物的表达的多肽、核酸、核糖核蛋白或小分子。

在一些实施例中,在递送融合体之前、同时或之后通过(例如诱导应激或细胞***)来修饰靶细胞或组织以增加融合率。一些非限制性实例包括诱导缺血、化学疗法治疗、抗生素、照射、毒素、发炎、炎性分子、抗炎分子、酸性损伤、碱性损伤、烧伤、聚乙二醇、神经递质、骨髓毒性药物、生长因子或激素、组织切除、饥饿和/或运动。

在一些实施例中,用血管舒张剂(例如氧化氮(NO)、一氧化碳、前列环素(PGI2)、***、酚妥拉明)或血管收缩剂(例如血管紧张素(AGT)、内皮素(EDN)、去甲肾上腺素)治疗靶细胞或组织以增加融合体转运至靶组织的速率。

在一些实施例中,用化学剂,例如化学治疗剂来治疗靶细胞或组织。在此类实施例中,化学治疗剂诱导增强靶细胞或组织的融合活性的对靶细胞或组织的损伤。

在一些实施例中,用物理应力,例如电融合来治疗靶细胞或组织。在此类实施例中,物理应力使靶细胞或组织的膜不稳定,以增强靶细胞或组织的融合活性。

在一些实施例中,靶细胞或组织可用药剂治疗以增强与融合体的融合。例如,可用抗抑郁药刺激特定神经元受体以增强融合特性。

包含本文所述的融合体的组合物可施用或靶向至循环系统、肝系统、肾系统、心肺系统、中枢神经系统、外周神经系统、肌肉骨胳系统、淋巴系统、免疫系统、感觉神经系统(视觉、听觉、嗅觉、触觉、味觉)、消化系统、内分泌系统(包括脂肪组织代谢调节)和生殖系统。

在实施例中,将本文所述的融合体组合物离体递送至细胞或组织,例如人类细胞或组织。在一些实施例中,将组合物递送至处于受伤状态(例如由于创伤、疾病、缺氧、缺血或其它损伤)的离体组织。

在一些实施例中,将融合体组合物递送至离体移植物(例如组织外植体或用于移植的组织,例如人类静脉,肌肉骨胳移植物(如骨骼或肌腱)、角膜、皮肤、心脏瓣膜、神经;或分离或培养的器官,例如要向人类移植的器官,例如人类心脏、肝脏、肺脏、肾脏、胰脏、肠、胸腺、眼睛)。组合物改善移植物的活力、呼吸或其它功能。组合物可在移植之前、期间和/或之后递送至组织或器官。

在一些实施例中,将本文所述的融合体组合物离体递送至衍生自个体的细胞或组织。在一些实施例中,向个体重新施用细胞或组织(即,细胞或组织为自体的)。

融合体可与来自任何哺乳动物(例如人类)组织,例如来自上皮、***、肌肉或神经组织或细胞,以及其组合的细胞融合。融合体可递送至任何真核(例如哺乳动物)器官系统,例如心血管系统(心脏、脉管系统);消化系统(食道、胃、肝脏、胆囊、胰脏、肠、结肠、直肠和***);内分泌系统(下丘脑、脑下垂体、松果体或松果体腺体、甲状腺、甲状旁腺、肾上腺);***系统(肾脏、输尿管、膀胱);淋巴系统(淋巴、***、***、扁桃体、腺样体、胸腺、脾脏);皮肤系统(皮肤、头发、指甲);肌肉系统(例如骨骼肌);神经系统(脑、脊髓、神经);生殖系统(卵巢、子宫、乳腺、睾丸、输精管、精囊、***);呼吸系统(咽、喉、气管、支气管、肺、隔膜);骨骼系统(骨骼、软骨)以及其组合。

在实施例中,融合体在向个体施用时靶向组织,例如肝脏、肺脏、心脏、脾脏、胰脏、胃肠道、肾脏、睾丸、卵巢、大脑、生殖器官、中枢神经系统、外周神经系统、骨骼肌、内皮、内耳、脂肪组织(例如棕色脂肪组织或白色脂肪组织)或眼睛,例如其中在24、48或72小时之后,施用的融合体群体中至少0.1%、0.5%、1%、1.5%、2%、2.5%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%的融合体存在于靶组织中,例如根据实例87或100的分析。

在实施例中,融合体可与来自干细胞或祖细胞来源的细胞融合,例如骨髓基质细胞、骨髓源性成年祖细胞(MAPC)、内皮祖细胞(EPC)、胚细胞、在室管膜下区中形成的中间祖细胞、神经干细胞、肌肉干细胞、卫星细胞、肝干细胞、造血干细胞、骨髓基质细胞、表皮干细胞、胚胎干细胞、间充质干细胞、脐带干细胞、前体细胞、肌肉前体细胞、成肌细胞、心肌细胞、神经前体细胞、神经胶质前体细胞、神经元前体细胞、成肝细胞。

在实施例中,靶细胞不是癌细胞,例如不是胶质母细胞瘤细胞。在实施例中,靶细胞是干细胞或完全分化的细胞。

融合剂结合搭配物,例如用于降落垫实施例

在某些方面,本公开提供一种将膜封闭制剂递送至个体的靶细胞的方法。在一些实施例中,方法包含向个体施用融合体,例如包含编码融合剂(例如成肌蛋白)的核酸的膜封闭制剂,其中核酸在允许融合剂表达于个体的融合体表面上的条件下不存在或不表达(例如存在但不转录或不翻译)于细胞内。在一些实施例中,方法进一步包含在允许融合体上的融合剂和融合剂结合搭配物融合的条件下向个体施用组合物,所述组合物包含药剂,例如治疗剂,和融合剂结合搭配物,任选地包含载体,例如膜。在一些实施例中,载体包含膜,例如脂质双层,例如药剂安置于脂质双层内。在一些实施例中,脂质双层与靶细胞融合,从而将药剂递送至个体的靶细胞。

在一个实施例中,融合剂结合搭配物为安置于靶细胞,例如本文公开的靶细胞的膜(例如脂质双层)中的部分,例如蛋白质分子。在一个实施例中,膜可为细胞表面膜,或细胞器(例如线粒体、溶酶体或高尔基体)的亚细胞膜。在一个实施例中,融合剂结合搭配物可内源性表达或外源性表达(例如通过本文所述的方法)。在一个实施例中,融合剂结合搭配物可与其它融合剂结合搭配物聚集于膜处。

在一个实施例中,融合剂结合搭配物或多个融合剂结合搭配物在靶细胞膜中的存在产生了界面,所述界面可促进靶细胞(例如本文所述的细胞)上的融合剂结合搭配物与融合体(例如本文所述的融合体)上的融合剂之间的相互作用,例如结合。在一些实施例中,融合体上的融合剂与靶细胞,例如靶细胞膜(例如脂质双层)上的融合剂结合搭配物相互作用(例如结合),以诱导融合体与靶膜的融合。在一些实施例中,融合剂与包括线粒体的亚细胞细胞器上的降落垫上的融合剂结合搭配物相互作用(例如结合),以诱导融合体与亚细胞细胞器的融合。

融合剂结合搭配物可通过下文论述的任何方法引入靶细胞,例如本文公开的靶细胞中。

在一个实施例中,将融合剂结合搭配物引入至靶细胞的方法包含从个体(例如本文所述的个体)去除(例如提取)靶细胞(例如经由血球分离术或活检),和在允许融合剂结合搭配物表达于靶细胞膜上的条件下施用(例如暴露于)融合剂结合搭配物。在一个实施例中,方法进一步包含使表达融合剂结合搭配物的靶细胞离体与包含融合剂的融合体接触以诱导融合体与靶细胞膜的融合。在一个实施例中,融合至融合体的靶细胞被重新引入至个体中,例如通过静脉内。

在一个实施例中,表达融合剂结合搭配物的靶细胞被重新引入至个体中,例如通过静脉内。在一个实施例中,方法进一步包含向个体施用包含融合剂的融合体以允许融合体上的融合剂与靶细胞上的融合剂结合搭配物相互作用(例如结合),和融合体与靶细胞膜融合。

在一些实施例中,用表观遗传修饰剂,例如小分子表观遗传修饰剂处理靶细胞,以增加或减少内源性细胞表面分子,例如融合剂结合搭配物,例如器官、组织或细胞靶向分子的表达,其中细胞表面分子为蛋白质、聚糖、脂质或低分子量分子。在一个实施例中,靶细胞被遗传修饰以增加内源性细胞表面分子,例如融合剂结合搭配物,例如器官、组织或细胞靶向分子的表达,其中细胞表面分子为蛋白质、聚糖、脂质或低分子量分子。在一个实施例中,遗传修饰可降低例如融合剂结合搭配物的内源性细胞表面分子的转录活化子的表达。

在一个实施例中,靶细胞被遗传修饰以表达(例如过表达)外源性细胞表面分子,例如融合剂结合搭配物,其中细胞表面分子为蛋白质、聚糖、脂质或低分子量分子。

在一些实施例中,靶细胞被遗传修饰以增加外源融合剂于细胞中的表达,例如转基因的递送。在一些实施例中,将核酸,例如DNA、mRNA或siRNA转移至靶细胞,例如以增加或减少细胞表面分子(蛋白质、聚糖、脂质或低分子量分子)的表达。在一些实施例中,核酸靶向融合剂结合搭配物的抑制子,例如shRNA或siRNA构筑体。在一些实施例中,核酸编码融合剂结合搭配物抑制子的抑制剂。

使用方法

本文所述的药物组合物的施用可通过口服、吸入、经皮或非经肠(包括静脉内、瘤内、腹膜内、肌肉内、腔内和皮下)施用。融合体可单独施用或被配制成药物组合物。

融合体可以单位剂量组合物,如单位剂量经口、非经肠、经皮或吸入组合物的形式施用。此类组合物是通过混合制备的,并且适合于经口、吸入、经皮或非经肠施用,并且因此可呈片剂、胶囊、口服液体制剂、粉末、颗粒、***剂、可重构散剂、可注射和可输注溶液或悬浮液或栓剂或气雾剂的形式。

在一些实施例中,本文所述的融合体组合物的递送可诱导或阻断细胞分化、去分化或转分化。靶哺乳动物细胞可以是前体细胞。或者,靶哺乳动物细胞可以是分化细胞,且细胞命运改变包括驱动去分化为多能前体细胞,或阻断此类去分化。在需要细胞命运改变的情况下,在使得诱导细胞命运改变的条件下将有效量的编码细胞命运诱导分子或信号的本文所述的融合体引入至靶细胞中。在一些实施例中,本文所述的融合体适用于将细胞亚群从第一表型重编程为第二表型。此类重编程可为临时或永久的。任选地,重编程诱导靶细胞采取中间表型。

还提供减少靶细胞群体中的细胞分化的方法。例如,在使得组合物减少前体细胞分化的条件下,使含有一种或多种前体细胞类型的靶细胞群体与本文所述的融合体组合物接触。在某些实施例中,靶细胞群体含有哺乳动物个体中的受损组织或受外科手术影响的组织。前体细胞为例如基质前体细胞、神经前体细胞或间充质前体细胞。

包含货物的本文所述的融合体组合物可用于将此类货物递送至细胞组织或个体。通过施用本文所述的融合体组合物来递送货物可修饰细胞蛋白表达水平。在某些实施例中,施用的组合物引导一种或多种货物(例如多肽或mRNA)的上调(经由细胞中的表达、细胞中的递送或细胞内的诱导),其提供在递送多肽的细胞中基本上不存在或降低的功能活性。例如,缺失的功能活性可在本质上为酶的、结构的或调节的。在相关实施例中,施用的组合物引导一种或多种多肽的上调,其增加(例如协同地)在上调多肽的细胞中存在但基本上缺乏的功能活性。在某些实施例中,施用的组合物引导一种或多种货物(例如多肽、siRNA或miRNA)的下调(经由细胞中的表达、细胞中的递送或细胞内的诱导),其抑制在递送多肽、siRNA或miRNA的细胞中存在或上调的功能活性。例如,上调的功能活性可在本质上为酶的、结构的或调节的。在相关实施例中,施用的组合物引导一种或多种多肽的下调,其降低(例如协同地)在下调多肽的细胞中存在或上调的功能活性。在某些实施例中,施用的组合物引导某些功能活性的上调和其它功能活性的下调。

在实施例中,融合体组合物(例如包含线粒体或DNA的融合体组合物)介导对靶细胞的作用,且所述作用持续至少1、2、3、4、5、6或7天、2、3或4周、或1、2、3、6或12个月。在一些实施例中(例如其中融合体组合物包含外源蛋白),所述作用持续小于1、2、3、4、5、6或7天、2、3或4周、或1、2、3、6或12个月。

离体应用

在实施例中,将本文所述的融合体组合物离体递送至细胞或组织,例如人类细胞或组织。在实施例中,组合物改善离体细胞或组织的功能,例如改善细胞活力、呼吸或其它功能(例如本文所述的另一功能)。

在一些实施例中,将组合物递送至处于受伤状态(例如由于创伤、疾病、缺氧、缺血或其它损伤)的离体组织。

在一些实施例中,将组合物递送至离体移植物(例如组织外植体或用于移植的组织,例如人类静脉,肌肉骨胳移植物(如骨骼或肌腱)、角膜、皮肤、心脏瓣膜、神经;或分离或培养的器官,例如要向人类移植的器官,例如人类心脏、肝脏、肺脏、肾脏、胰脏、肠、胸腺、眼睛)。组合物可在移植之前、期间和/或之后递送至组织或器官。

在一些实施例中,组合物被递送、施用或与细胞(例如细胞制剂)接触。细胞制剂可为细胞疗法制剂(意图向人类个体施用的细胞制剂)。在实施例中,细胞制剂包含表达嵌合抗原受体(CAR),例如表达重组CAR的细胞。表达CAR的细胞可以是例如T细胞、自然杀手(NK)细胞、细胞毒性T淋巴细胞(CTL)、调节T细胞。在实施例中,细胞制剂为神经干细胞制剂。在实施例中,细胞制剂为间充质干细胞(MSC)制剂。在实施例中,细胞制剂为造血干细胞(HSC)制剂。在实施例中,细胞制剂为胰岛细胞制剂。

体内使用

可向个体,例如哺乳动物,例如人类施用本文所述的融合体组合物。在此类实施例中,个体可处于特定疾病或病况(例如本文所述的疾病或病况)的风险下、可具有所述疾病或病况的症状或可诊断患有或鉴别为患有所述疾病或病况。

在一些实施例中,融合体来源来自施用融合体组合物的相同个体。在其它实施例中,其为不同的。例如,融合体和受体组织的来源可为自体的(来自相同个体)或异源的(来自不同个体)。在任一情况下,本文所述的融合体组合物的供体组织可为与受体组织不同的组织类型。例如,供体组织可为肌肉组织且受体组织可为***(例如脂肪组织)。在其它实施例中,供体组织和受体组织可为相同或不同类型,但来自不同器官系统。

本文所述的融合体组合物可向患有癌症、自身免疫疾病、传染病、代谢疾病、神经退化性疾病或遗传病(例如酶缺乏)的个体施用。在一些实施例中,个体需要再生。

在一些实施例中,融合体与抑制膜融合的蛋白质的抑制剂共同施用。举例来说,Suppressyn为抑制细胞-细胞融合的人类蛋白质(Sugimoto等人,“抑制细胞-细胞融合的新颖人类内源性反转录病毒蛋白(A novel human endogenous retroviral proteininhibits cell-cell fusion)”《科学报告(Scientific Reports)》3:1462DOI:10.1038/srep01462)。因此,在一些实施例中,融合体与sypressyn的抑制剂,例如siRNA或抑制抗体共同施用。

非人类应用

本文所述的组合物还可用于类似地调节包括但不限于以下的多种其它生物体的细胞或组织功能或生理技能:农场或役用动物(马、牛、猪、鸡等)、宠物或动物园动物(猫、狗、蜥蜴、鸟类、狮子、老虎和熊等)、水产养殖动物(鱼、蟹、虾、牡蛎等)、植物物种(树木、农作物、观赏花卉等)、发酵物种(酵母等)。本文所述的融合体组合物可由此类非人类来源制成且向非人类靶细胞或组织或个体施用。

融合体组合物对于靶标可为自体的、同种异体的或异种的。

本文引用的所有参考文献和出版物都以引用的方式并入本文中。

提供以下实例以进一步说明本发明的一些实施例,但并不打算限制本发明的范围;通过其示例性性质应了解,可替代地使用本领域技术人员已知的其它程序、方法或技术。

实例

实例1.通过化学处理(PEG)产生去核的融合细胞

用0.25%胰蛋白酶使表达Mito-DsRed(线粒体特异性靶向染料)的供体HeLa细胞胰蛋白酶化、收集、以500xg旋转5分钟、在PBS中洗涤一次且计数。随后将10×10^6个细胞再悬浮于补充有10μg/ml细胞松弛素-B的3ml含12.5%聚蔗糖的完全MEM-α(+10%FBS、+1%青霉素/链霉素、+谷氨酰氨)中15分钟。为了使细胞去核,将其转移至由以下聚蔗糖级分(从上到下)组成的不连续聚蔗糖梯度液:2ml 12.5%聚蔗糖、0.5ml 15%聚蔗糖、0.5ml 16%聚蔗糖、2ml 17%聚蔗糖梯度、2ml 25%聚蔗糖。所有聚蔗糖梯度级分在补充有10μg/ml细胞松弛素-B的完全DMEM中制成。将梯度在37C下在Beckman SW-40超速离心机,Ti-70转子上以107971xg旋转1小时。在离心后,从12.5%、15%、16%和1/2的17%聚蔗糖级分收集去核的HeLa细胞且再悬浮于完全DMEM(+10%FBS、+1%青霉素/链霉素、+谷氨酰氨)中,且以500xg旋转5分钟以制成集结粒。将去核的Mito-DsRed供体细胞在DMEM中洗涤2×。同时,使表达Mito-GFP(线粒体特异性靶向染料)的受体HeLa细胞胰蛋白酶化、计数且准备融合。

为了融合,将去核的Mito-DsRed供体HeLa细胞与Mito-GFP受体HeLa细胞在37C下以1:1比率(各200,000个)在50%聚乙二醇溶液(50%w/v PEG制备于DMEM完全w/10%DMSO中)中组合1分钟。随后将细胞在10ml完全DMEM中洗涤3×且以50k个细胞/象限的密度涂铺于35mm玻璃底象限成像培养皿上,其中每个象限的面积为1.9cm2。

实例2.通过化学处理(PEG)产生有核的融合细胞

用0.25%胰蛋白酶使表达Mito-DsRed(线粒体特异性靶向染料)的供体HeLa细胞胰蛋白酶化、收集、以500xg旋转5分钟、在PBS中洗涤一次且计数。随后将2×10^6个细胞再悬浮于完全DMEM(+10%FBS、+1%青霉素/链霉素、+谷氨酰氨)中、计数且准备融合。

将Mito-DsRed供体细胞在DMEM中洗涤3×。同时,使表达Mito-GFP(线粒体特异性靶向染料)的受体HeLa细胞胰蛋白酶化、计数且准备融合。

为了融合,将Mito-DsRed供体HeLa细胞与Mito-GFP受体HeLa细胞在37C下以1:1比率(各200,000个)在50%聚乙二醇溶液(50%w/v PEG制备于DMEM完全w/10%DMSO中)中组合1分钟。随后将细胞在10ml完全DMEM中洗涤3×且以50k个细胞/象限的密度涂铺于35mm玻璃底象限成像培养皿上,其中每个象限的面积为1.9cm2。

实例3.产生表达外源融合剂的HeLa细胞

此实例描述产生表达外源融合剂的组织培养细胞。以下实例同样适用于任何基于蛋白质的融合剂且同样适用于产生初级细胞(悬浮液中或粘附细胞)和组织。在某些情况下,可使用诱导融合所需的融合剂对(描述为融合剂和融合剂结合搭配物)。

将融合剂基因,融合失败1(fusion failure 1,EFF-1)克隆至pIRES2-AcGFP1载体(Clontech)中,且接着使用Lipofectamine 2000转染试剂(Invitrogen)将此构筑体转染至HeLa细胞(CCL-2TM,ATCC)中。将融合剂结合搭配物基因,锚细胞融合失败1(AFF-1)克隆至pIRES2 DsRed-Express 2载体(Clontech)中,且接着使用Lipofectamine 2000转染试剂(Invitrogen)将此构筑体转染至HeLa细胞(CCL-2TM,ATCC)中。将转染的HeLa细胞在37℃、5%CO2下保持于补充有GlutaMAX(GIBCO)、10%胎牛血清(GIBCO)和500mg/mL博莱霉素的达尔伯克氏改良伊格尔培养基(Dulbecco's Modified Eagle Medium,DMEM)中。通过分选荧光活化细胞分选(FACS)分离表达EFF-1的细胞,以获得表达EFF-1融合剂的GFP+HeLa细胞的纯群体。通过分选荧光活化细胞分选(FACS)分离表达AFF-1的细胞,以获得表达AFF-1融合剂结合搭配物的DSRED+HeLa细胞的纯群体。

实例4.通过化学增强的融合去核细胞递送细胞器

将如实例1中所述产生和融合的融合细胞(Mito-DsRed供体去核细胞和Mito-GFP受体HeLa细胞)在沉积于成像培养皿中之后24小时在Zeiss LSM 780倒置共聚焦显微镜上以63×放大率成像。对仅单独表达Mito-DsRed和单独表达Mito-GFP的细胞分别成像以配置采集设置,以此方式确保在同时存在和采集Mito-DsRed和Mito-GFP的条件下,两个通道之间没有信号重叠。以完全无偏的方式选择十个所关注区域,唯一的标准是每个ROI内含有最少10个细胞,使得最少100个细胞可用于下游分析。如果这些图像中的给定像素的任一通道(mito-DsRed和mito-GFP)的强度大于所有三个ROI中每个通道的最大强度值的10%,则将其确定为线粒体阳性。

基于以下标准鉴别细胞器递送的融合事件:基于上文指示的阈限,细胞中>50%的线粒体(通过为mito-GFP+或mito-Ds-Red+的所有像素鉴别)对于mitoDs-Red和mito-GFP均呈阳性,表明含有这些蛋白质的细胞器(在此情况下为线粒体)已被递送、融合且其内容物被掺混。在24小时的时间点,多个细胞展现通过融合的阳性细胞器递送,如图7中所指示。这是供体与受体HeLa细胞之间通过融合的阳性细胞器递送的图像。以白色指示的细胞内区域指示供体与受体线粒体之间的重叠。灰色的细胞内区域指示供体与受体细胞器不重叠的区域。

实例5.通过化学增强的融合有核细胞递送细胞器

将如实例2中所述产生和组合的融合细胞(Mito-DsRed供体细胞和Mito-GFP受体HeLa细胞)在沉积于成像培养皿中之后24小时在Zeiss LSM 780倒置共聚焦显微镜上以63×放大率成像。对仅单独表达Mito-DsRed和单独表达Mito-GFP的细胞分别成像以配置采集设置,以此方式确保在同时存在和采集Mito-DsRed和Mito-GFP的条件下,两个通道之间没有信号重叠。以完全无偏的方式选择十个所关注区域,唯一的标准是每个ROI内含有最少10个细胞,使得最少100个细胞可用于下游分析。如果这些图像中的给定像素的任一通道(mito-DsRed和mito-GFP)的强度大于所有三个ROI中每个通道的最大强度值的20%,则将其确定为线粒体阳性。

基于以下标准鉴别细胞器递送的融合事件:基于上文指示的阈限,细胞中>50%的线粒体(通过为mito-GFP+或mito-Ds-Red+的所有像素鉴别)对于mitoDs-Red和mito-GFP均呈阳性,表明含有这些蛋白质的细胞器(在此情况下为线粒体)已被递送、融合且其内容物被掺混。在24小时的时间点,多个细胞展现通过融合的阳性细胞器递送,如图8中所指示。这是供体与受体HeLa细胞之间通过融合的阳性细胞器递送的图像。以白色指示的细胞内区域指示供体与受体线粒体之间的重叠。灰色的细胞内区域指示供体与受体细胞器不重叠的区域。

实例6.通过蛋白质增强的融合去核细胞递送线粒体

将如实例3中所述产生和组合的融合细胞在沉积于成像培养皿中之后24小时在Zeiss LSM 780倒置共聚焦显微镜上以63×放大率成像。对仅单独表达Mito-DsRed和单独表达Mito-GFP的细胞分别成像以配置采集设置,以此方式确保在同时存在和采集Mito-DsRed和Mito-GFP的条件下,两个通道之间没有信号重叠。以完全无偏的方式选择十个所关注区域,唯一的标准是每个ROI内含有最少10个细胞,使得最小数目个细胞可用于下游分析。如果这些图像中的给定像素的任一通道(mito-DsRed和mito-GFP)的强度大于所有三个ROI中每个通道的最大强度值的10%,则将其确定为线粒体阳性。

将基于以下标准鉴别细胞器递送的融合事件:基于上文指示的阈限,细胞中>50%的线粒体(通过为mito-GFP+或mito-Ds-Red+的所有像素鉴别)对于mitoDs-Red和mito-GFP均呈阳性,其将表明含有这些蛋白质的细胞器(在此情况下为线粒体)被递送、融合且其内容物被掺混。在24小时的时间点,预期多个细胞展现通过融合的阳性细胞器递送。

实例7:通过核酸电穿孔产生融合体

此实例描述通过用编码融合剂的核酸(例如mRNA或DNA)对细胞或囊泡进行电穿孔来产生融合体。

将包括嘌呤霉素抗性基因的开放阅读框架连同克隆片段的开放阅读框架的转座酶载体(System Biosciences,Inc.)(例如来自水泡性口炎病毒的糖蛋白[VSV-G],OxfordGenetics#OG592)使用电穿孔器(Amaxa)和293T细胞系特异性核转染试剂盒(Lonza)电穿孔至293Ts中。

在含有20%胎牛血清和1×青霉素/链霉素的DMEM中用1μg/μL嘌呤霉素选择3-5天后,细胞接着用1×PBS,冰冷的溶解缓冲液(150mM NaCl、0.1%Triton X-100、0.5%脱氧胆酸钠、0.1%SDS、50mM Tris-HCl,pH 8.0和蛋白酶抑制剂混合液(Abcam,ab201117))洗涤,超声处理3次,每次10-15秒,且以16,000x g离心20分钟。用特异性针对VSV-G的探针对回收的上清液级分进行蛋白质印迹,以确定来自由稳定转染的细胞或对照细胞制备的融合体的VSV-G的非膜特异性浓度且相比于VSV-G蛋白的标准。

在实施例中,来自稳定转染的细胞的融合体将比从未被稳定转染的细胞产生的融合体具有更多VSV-G。

实例8:通过蛋白质电穿孔产生融合体

此实例描述融合剂电穿孔以产生融合体。

使用电穿孔转染系统(Thermo Fisher Scientific)将大致5×106个细胞或囊泡用于电穿孔。为了形成预混液,将24μg纯化的蛋白质融合剂添加至再悬浮缓冲液(提供于试剂盒中)。将混合物在室温下培育10分钟。同时,将细胞或囊泡转移至无菌试管中且在500×g下离心5分钟。吸出上清液且将集结粒再悬浮于1ml不含Ca2+和Mg2+的PBS中。具有融合剂的缓冲液接着用于再悬浮细胞或囊泡的集结粒。细胞或囊泡悬浮液还用于优化条件,其在脉冲电压、脉冲宽度和脉冲数方面不同。在电穿孔之后,将具有融合剂的电穿孔细胞或囊泡用PBS洗涤,再悬浮于PBS中,且保持于冰上。

参见例如Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化(Rapid and highly efficiency mammalian cell engineering via Cas9 proteintransfection),《生物技术杂志(Journal of Biotechnology)》208:44-53,2015。

实例9:通过囊泡形成和离心产生和分离融合体

此实例描述通过囊泡化和离心来产生和分离融合体。这是可分离融合体的方法之一。

如下制备融合体。将大致4×106个HEK-293T细胞在10cm培养皿中接种于完全培养基(DMEM+10%FBS+Pen/Strep)中。在接种之后一天,将15μg融合剂表达质粒或病毒递送至细胞。在融合剂表达的足够时段之后,将培养基用补充有100μM ATP的新鲜培养基小心地替换。在融合剂表达之后48-72小时收获上清液,通过过滤通过0.45μm过滤器澄清,且在150,000×g下超速离心1小时。将粒化的材料再悬浮于冰冷的PBS中过夜。将融合体再悬浮于所需的缓冲液中以进行实验。

参见例如Mangeot等人,《分子疗法(Molecular Therapy)》,第19卷第9期,1656-1666,2011年9月

实例10:产生和分离巨质膜融合体

此实例描述通过囊泡化和离心来产生和分离融合体。这是可分离融合体的方法之一。如下制备融合体。

简单来说,将表达融合剂的HeLa细胞在缓冲液(10mM HEPES、150mM NaCl、2mMCaCl2,pH 7.4)中洗涤两次,再悬浮于溶液(1mM DTT、12.5mM三聚甲醛和1mM N-乙基顺丁烯二酰亚胺于GPMV缓冲液中)中,且在37℃下培育1小时。通过首先在100×g下离心10分钟来去除细胞,且接着在4℃下在20,000×g下收获融合体1小时而使融合体从细胞澄清。将融合体再悬浮于所需的缓冲液中以进行实验。

参见例如Sezgin E等人使用巨膜血浆囊泡阐明膜结构和蛋白质特性(Elucidating membrane structure and protein behavior using giant membraneplasma vesicles.)《自然实验手册(Nat.Protocols.)》7(6):1042-512012。

实例11:产生和分离融合体影

此实例描述通过低渗处理和离心来产生和分离融合体。这是可产生融合体的方法之一。

首先,主要通过使用低渗处理将融合体从表达融合剂的间充质干细胞(109个细胞)分离,使得细胞破裂且形成融合体。根据特定实施例,细胞再悬浮于低渗溶液Tris-镁缓冲液(TM,例如在4℃下为pH 7.4或pH 8.6,用HCl进行pH调节)中。通过相差显微镜检查来监测细胞溶胀。一旦细胞溶胀且形成融合体,将悬浮液置于均质机中。通常,约95%细胞破裂为足够的,如通过细胞计数和标准AOPI染色所测量。接着将膜/融合体置于蔗糖(0.25M或更高)中进行保存。或者,融合体可由本领域中已知溶解细胞的其它方法形成,如轻度超声处理(《Arkhiv anatomii,gistologii i embriologii》;1979年8月,77(8)5-13;PMID:496657)、冻融(《自然(Nature.)》1999年12月2日;402(6761):551-5;PMID:10591218)、弗氏压碎(French-press)(《酶学方法(Methods in Enzymology)》,第541卷,2014,第169-176页;PMID:24423265)、针传代(www.sigmaaldrich.com/technical-documents/protocols/biology/nuclear-protein-ext raction.html)或在含清洁剂的溶液中增溶(www.thermofisher.com/order/catalog/product/89900)。

为了避免粘附,将融合体置于塑料管中且离心。产生层压的集结粒,其中最顶部的浅灰色薄层包括大多融合体。但是,整个集结粒被加工以增加产率。可重复离心(例如在4℃下以3,000rpm持续15分钟)和洗涤(例如20体积的Tris镁/TM-蔗糖pH 7.4)。

在下一步中,通过以不连续的蔗糖密度梯度浮选来分离融合体级分。洗涤的集结粒残留少量过剩的上清液,所述集结粒现在包括融合体、细胞核和不完全破裂的全细胞。向悬浮液添加另外的含60%w/w蔗糖的TM,pH 8.6,以在折射计上得到45%蔗糖的读数。在此步骤之后,所有溶液均为TM pH 8.6。将15ml悬浮液置于SW-25.2硝酸纤维素管中且通过分别添加40%和35%w/w蔗糖的15ml层,且接着添加5ml TM-蔗糖(0.25M)而在悬浮液上形成不连续梯度。接着将样品在4℃下以20,000rpm离心10分钟。细胞核沉淀物形成集结粒,在40%-45%界面收集不完全破裂的全细胞,且在35%-40%界面收集融合体。收集且合并来自多个管的融合体。

参见例如国际专利公开案WO2011024172A2。

实例12:通过挤压产生融合体

此实例描述通过挤压穿过膜制造融合体。

简单来说,表达融合剂的造血干细胞在37℃悬浮液中,在含有蛋白酶抑制剂混合液(Set V,Calbiochem 539137-1ML)的无血清培养基中的密度为1×106个细胞/毫升。用鲁尔锁注射器吸出细胞且一次穿过一次性的5mm针筒过滤器进入清洁的管中。如果膜结垢且变得堵塞,则将其放在一边且附接新的过滤器。在整个细胞悬浮液穿过过滤器之后,使5mL无血清培养基穿过用于所述过程的所有过滤器,以洗涤通过过滤器的任何残留物质。溶液接着与挤出的融合体在滤液中组合。

融合体可通过遵循相同方法以介于5mm至0.2mm范围内的越来越小的过滤器孔隙尺寸继续挤压而使尺寸进一步减小。当完成最终挤压时,悬浮液通过离心(所需的时间和速度因尺寸而异)粒化且再悬浮于培养基中。

另外,此过程可以使用肌动蛋白细胞骨架抑制剂来补充,以减少现有细胞骨架结构对挤压的影响。简单来说,将1×106个细胞/毫升悬浮液在具有500nM Latrunculin B(ab144291,Abcam,Cambridge,MA)的无血清培养基中培育且在37℃下在5%CO2存在下培育30分钟。在培育之后,添加蛋白酶抑制剂混合液且将细胞抽吸至鲁尔锁注射器中,如先前所述地进行挤压。

将融合体粒化且在PBS中洗涤一次以去除细胞骨架抑制剂,随后再悬浮于培养基中。

实例13:通过蛋白质化学处理产生融合体

此实例描述化学介导的融合剂递送以产生融合体。大致5×106个细胞或囊泡用于化学介导的融合剂递送。将细胞或囊泡悬浮于50μl Opti-MEM培养基中。为了形成预混液,将24μg纯化的蛋白质融合剂与25μl Opti-MEM培养基混合,接着添加25μl含有2μl脂质转染试剂3000的Opti-MEM。通过轻轻地旋转板且在37C下培育6小时来混合细胞或囊泡和融合剂溶液,使得融合剂将被并入细胞或囊泡膜中。接着将融合体用PBS洗涤,再悬浮于PBS中且保持于冰上。

另外参见Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化,《生物技术杂志》208:44-53,2015。

实例14:通过用含融合剂的脂质体处理来产生融合体

此实例描述脂质体介导的递送融合剂至源细胞以产生融合体。大致5×106个细胞或囊泡用于脂质体介导的融合剂递送。将细胞或囊泡悬浮于50μl Opti-MEM培养基中。融合剂蛋白在正辛基b-D-吡喃葡萄糖苷存在下从细胞纯化。正辛基b-D-吡喃葡萄糖苷为用于溶解整合膜蛋白的温和的清洁剂。接着通过混合正辛基b-D-吡喃葡萄糖苷悬浮的蛋白质与用正辛基b-D-吡喃葡萄糖苷预饱和的大(400nm直径)单层囊泡(LUV),接着去除正辛基b-D-吡喃葡萄糖苷而将融合剂蛋白复原成LUV,如Top等人,《欧洲分子生物学学会(EMBO)》24:2980-2988,2005中所述。为了形成预混液,将含有24μg总融合剂蛋白的大量脂质体与50μlOpti-MEM培养基混合。接着将脂质体和源细胞或囊泡的溶液合并,且通过轻轻地旋转板且在允许含融合剂的脂质体和源细胞或囊泡融合的条件下在37C下培育6小时来混合整个溶液,使得融合剂蛋白将被并入源细胞或囊泡膜中。接着将融合体用PBS洗涤,再悬浮于PBS中且保持于冰上。

另外参见Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化,《生物技术杂志》208:44-53,2015。

实例15:分离从细胞自由释放的融合微囊泡

此实例描述通过离心分离融合体。这是可分离融合体的方法之一。

通过差速离心从表达融合剂的细胞分离融合体。首先通过在>100,000×g下超速离心1小时来使培养基(DMEM+10%胎牛血清)澄清不含小粒子。澄清的培养基接着用于生长表达融合剂的小鼠胚胎成纤维细胞。通过以200×g离心10分钟而使细胞与培养基分离。收集上清液且依序以500×g离心10分钟两次、以2,000×g离心15分钟一次、以10,000×g离心30分钟一次以及以70,000×g离心60分钟一次。在最终离心步骤期间将自由释放的融合体粒化、再悬浮于PBS中且以70,000×g再粒化。将最终集结粒再悬浮于PBS中。

另外参见Wubbolts R等人人类B细胞源性外泌体的蛋白质组学和生化分析:对其功能和多囊体形成的潜在影响(Proteomic and Biochemical Analyses of Human BCell-derived Exosomes:Potential Implications for their Function andMultivesicular Body Formation.)《生物化学杂志(J.Biol.Chem.)》278:10963-109722003。

实例16:融合体的物理去核

此实例描述通过细胞骨架灭活和离心来对融合体进行去核。这是可修饰融合体的方法之一。

从表达融合剂的哺乳动物初级或永生化细胞系分离融合体。通过用肌动蛋白骨架抑制剂处理和超速离心来使细胞去核。简单来说,收集C2C12细胞、粒化且再悬浮于含有12.5%Ficoll 400(F2637,Sigma,St.Louis MO)和500nM Latrunculin B(ab144291,Abcam,Cambridge,MA)的DMEM中且在37℃+5%CO2下培育30分钟。将悬浮液小心地层铺到含有增加浓度的DMEM于Ficoll 400中的溶液(15%、16%、17%、18%、19%、20%,每层3mL)的超速离心管中,所述溶液已在5%CO2存在下在37℃下平衡过夜。将Ficoll梯度液在37C下在Ti-70转子(Beckman-Coulter,Brea,CA)中以32,300RPM旋转60分钟。在超速离心之后,将发现于16-18%的聚蔗糖的融合体去除,用DMEM洗涤且再悬浮于DMEM中。

如实例35中所述地关于核含量用Hoechst 33342染色,接着使用流式细胞测量术和/或将进行成像以确认细胞核的射出。

实例17:通过照射修饰融合体

以下实例描述用γ照射修饰融合体。不受理论束缚,γ照射可引起DNA中的双链断裂且驱动细胞经历凋亡。

首先,在汇合密度以下在组织培养瓶或板上的单层中培养表达融合剂的细胞(例如通过培养或涂铺细胞)。接着从汇合瓶中去除培养基,用不含Ca2+和Mg2+的HBSS冲洗细胞,且使其胰蛋白酶化以从培养基质去除细胞。接着将细胞集结粒再悬浮于10ml不含青霉素/链霉素的组织培养基中且转移至100mm皮氏培养皿(Petri dish)中。集结粒中的细胞数应等于将获自150cm2烧瓶上的10-15次汇合MEF培养物的细胞数。细胞接着暴露于来自γ辐射源的4000rads以产生融合体。接着洗涤融合体且再悬浮于待使用的最终缓冲液或培养基中。

实例18:通过化学处理来修饰融合体

以下实例描述用丝裂霉素C处理来修饰融合体。不受任何具体理论束缚,丝裂霉素C处理通过灭活细胞周期来修饰融合体。

首先,在汇合密度下从组织培养瓶或板中的单层培养表达融合剂的细胞(例如通过培养或涂铺细胞)。将1mg/ml丝裂霉素C储备溶液添加至培养基以达到10μg/ml的最终浓度。接着将板放回到培育箱中2至3小时。接着从汇合瓶中去除培养基,用不含Ca2+和Mg2+的HBSS冲洗细胞,且使其胰蛋白酶化以从培养基质去除细胞。接着洗涤细胞且再悬浮于待使用的最终缓冲液或培养基中。

参见例如小鼠胚胎成纤维细胞(MEF)喂养细胞制备(Mouse Embryo Fibroblast(MEF)Feeder Cell Preparation),《现代分子生物学实验技术(Current Protocols inMolecular Biology.)》David A.Conner 2001。

实例19:融合体中缺乏转录活性

此实例定量相比于用于融合体产生的亲本细胞(例如源细胞),融合体中的转录活性。在一个实施例中,相比于亲本细胞(例如源细胞),融合体中的转录活性将为较低或不存在的。

融合体为递送治疗剂的基础。可以高效率递送至细胞或局部组织环境的治疗剂(如miRNA、mRNA、蛋白质和/或细胞器)可用于调节在受体组织中通常不活跃或在病理性低或高水平下不活跃的途径。在一个实施例中,融合体不能转录,或融合体的转录活性小于其亲本细胞的观察结果将证实已充分发生了核物质的去除。

通过先前实例中所述的任一种方法来制备融合体。接着在37℃和5%CO2下持续1小时将足够数量的融合体和用于产生融合体的亲本细胞在6孔低附着多孔板中涂铺至含有20%胎牛血清、1×青霉素/链霉素和可荧光标记的炔烃-核苷EU的DMEM中。对于阴性对照,也将足够数量的融合体和亲本细胞在多孔板中涂铺于含有20%胎牛血清、1×青霉素/链霉素但不具有炔烃-核苷EU的DMEM中。

在1小时培育之后,遵循制造商的成像试剂盒(ThermoFisher Scientific)说明书对样品进行处理。将包括阴性对照的细胞和融合体样品用1×PBS缓冲液洗涤三次且再悬浮于1×PBS缓冲液中且通过流式细胞仪(Becton Dickinson,San Jose,CA,USA),使用488nm氩气激光激发,和530+/-30nm发射进行分析。BD FACSDiva软件用于采集和分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。

在一个实施例中,由于省略了炔烃-核苷EU,阴性对照中如根据530+/-30nm发射所测量的转录活性将为零。在一些实施例中,相比于亲本细胞,融合体的转录活性将为小于约70%、60%、50%、40%、30%、20%、10%、5%、4%、3%、2%、1%或更小。

另外参见《美国国家科学院院刊(Proc Natl Acad Sci U S A)》,2008年10月14日;105(41):15779-84.doi:10.1073/pnas.0808480105.电子版2008年10月7日。

实例20:缺乏DNA复制或复制活性

此实例定量融合体中的DNA复制。在一个实施例中,相比于细胞,融合体将以低速率复制DNA。

通过先前实例中所述的任一种方法来制备融合体。通过并入可荧光标记的核苷酸(ThermoFisher Scientific#C10632)来评估融合体和亲本细胞DNA复制活性。在用二甲亚砜制备EdU储备溶液之后,将融合体和相等数目的细胞与EdU以10μM的最终浓度一起培育2小时。样品接着使用3.7%PFA固定15分钟,用1×PBS缓冲液,pH 7.4洗涤且在0.5%清洁剂于1×PBS缓冲液,pH 7.4中的溶液中渗透15分钟。

在渗透之后,将悬浮于含有0.5%清洁剂的PBS缓冲液中的融合体和细胞用1×PBS缓冲液,pH 7.4洗涤且在21℃下在反应混合液、1×PBS缓冲液、CuSO4(组分F)、叠氮化物-荧光剂488、1×反应缓冲液添加剂中培育30分钟。

用与上文相同地处理但在1×反应混合液中没有叠氮化物-荧光剂488的样品制成了融合体和细胞DNA复制活性的阴性对照。

接着将细胞和融合体样品洗涤且再悬浮于1×PBS缓冲液中且通过流式细胞测量术分析。用FACS细胞仪(Becton Dickinson,San Jose,CA,USA)以488nm氩气激光激发进行流式细胞测量术,且收集530+/-30nm发射光谱。FACS分析软件用于采集和分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。基于每个样品中叠氮化物-荧光剂488的中值强度来计算相对DNA复制活性。在正向和侧向散射通道中捕获所有事件(或者,可应用门来仅选择融合体群体)。通过从融合体的中值荧光强度值减去对应阴性对照样品的中值荧光强度值来确定融合体的标准化荧光强度值。接着将融合体样品的标准化的相对DNA复制活性相对于对应有核细胞样品进行标准化,以产生DNA复制活性的定量测量值。

在一个实施例中,融合体的DNA复制活性低于亲本细胞。

还参见Salic,2415-2420,doi:10.1073/pnas.0712168105。

实例21:用核酸货物电穿孔以修饰融合体

此实例描述用核酸货物对融合体进行电穿孔。

通过先前实例中所述的任一种方法来制备融合体。将大致109个融合体和1μg核酸(例如RNA)在电穿孔缓冲液(1.15mM磷酸钾pH 7.2、25mM氯化钾、60%碘克沙醇w/v于水中)中混合。使用单一4mm比色管,使用电穿孔系统(BioRad,165-2081)对融合体进行电穿孔。将融合体和核酸在400V、125μF和∞欧姆下电穿孔,且将比色管立即转移至冰上。在电穿孔之后,将融合体用PBS洗涤,再悬浮于PBS中,且保持于冰上。

参见例如Kamerkar等人,外泌体有助于胰腺癌中致癌性KRAS的治疗靶向(Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreaticcancer),《自然》,2017

实例22:用蛋白质货物电穿孔以修饰融合体

此实例描述用蛋白质货物对融合体进行电穿孔。

通过先前实例中所述的任一种方法来制备融合体。使用电穿孔转染系统(ThermoFisher Scientific)将大致5×106个融合体用于电穿孔。为了形成预混液,将24μg纯化的蛋白质货物添加至再悬浮缓冲液(提供于试剂盒中)。将混合物在室温下培育10分钟。同时,将融合体转移至无菌试管中且在500×g下离心5分钟。吸出上清液且将集结粒再悬浮于1ml不含Ca2+和Mg2+的PBS中。接着将具有蛋白质货物的缓冲液用于再悬浮融合体的集结粒。融合体悬浮液接着用于优化条件,其在脉冲电压、脉冲宽度和脉冲数方面不同。在电穿孔之后,将融合体用PBS洗涤,再悬浮于PBS中,且保持于冰上。

参见例如Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化,《生物技术杂志》208:44-53,2015。

实例23:化学处理融合体以用核酸货物修饰

此实例描述通过化学处理将核酸货物装载至融合体中。

通过先前实例中所述的任一种方法来制备融合体。通过在4C下以10,000g离心5分钟使大致106个融合体粒化。接着将粒化的融合体再悬浮于具有20μg DNA的TE缓冲液(10mMTris-HCl(pH 8.0),0.1mM EDTA)中。将融合体:DNA溶液用温和的清洁剂处理以提高DNA在整个融合体膜中的渗透率(试剂B,Cosmo Bio Co.,LTD,目录号ISK-GN-001-EX)。将溶液再次离心且将集结粒再悬浮于具有带正电的肽,如硫酸鱼精蛋白的缓冲液中,以增加载有DNA的融合体与靶受体细胞之间的亲和力(试剂C,Cosmo Bio Co.,LTD,目录号ISK-GN-001-EX)。在DNA装载之后,将装载的融合体在使用之前保持于冰上。

另外参见Kaneda,Y.等人,药物递送的新载体创新:融合型非病毒颗粒的开发(Newvector innovation for drug delivery:development of fusigenic non-viralparticles.)《当代药物靶体(Curr.Drug Targets)》,2003

实例24:化学处理融合体以用蛋白质货物修饰

此实例描述通过化学处理将蛋白质货物装载至融合体中。

通过先前实例中所述的任一种方法来制备融合体。通过在4C下以10,000g离心5分钟使大致106个融合体粒化。接着将粒化的融合体再悬浮于具有带正电的肽,如硫酸鱼精蛋白的缓冲液中,以增加融合体与货物蛋白质之间的亲和力(试剂A,Cosmo Bio Co.,LTD,目录号ISK-GN-001-EX)。随后,将10μg货物蛋白质添加至融合体溶液,接着添加温和的清洁剂以增加蛋白质在整个融合体膜中的渗透率(试剂B,Cosmo Bio Co.,LTD,目录号ISK-GN-001-EX)。将溶液再次离心且将集结粒再悬浮于具有带正电的肽,如硫酸鱼精蛋白的缓冲液中,以增加装载有蛋白质的融合体与靶受体细胞之间的亲和力(试剂C,Cosmo Bio Co.,LTD,目录号ISK-GN-001-EX)。在蛋白质装载之后,将装载的融合体在使用之前保持于冰上。

另外参见Yasouka,E.等人,无针鼻内施用含过敏原的HVJ-E减轻了实验性过敏性鼻炎(Needleless intranasal administration of HVJ-E containing allergenattenuates experimental allergic rhinitis.)《分子医学杂志(J.Mol.Med.)》,2007

实例25:转染融合体以用核酸货物修饰

此实例描述将核酸货物(例如DNA或mRNA)转染至融合体中。通过先前实例中所述的任一种方法来制备融合体。

5×106个融合体维持于Opti-Mem中。将0.5μg核酸与25μl Opti-MEM培养基混合,接着添加25μl含有2μl脂质转染试剂2000的Opti-MEM。将核酸、Opti-MEM和脂质转染试剂的混合物维持在室温下15分钟,接着添加至融合体。整个溶液通过轻轻地旋转板且在37C下培育6小时而混合。接着将融合体用PBS洗涤,再悬浮于PBS中且保持于冰上。

另外参见Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化,《生物技术杂志》208:44-53,2015。

实例26:转染融合体以用蛋白质货物修饰

此实例描述将蛋白质货物转染至融合体中。

通过先前实例中所述的任一种方法来制备融合体。5×106个融合体维持于Opti-Mem中。将0.5μg纯化蛋白与25μl Opti-MEM培养基混合,接着添加25μl含有2μl脂质转染试剂3000的Opti-MEM。将蛋白质、Opti-MEM和脂质转染试剂的混合物维持在室温下15分钟,接着添加至融合体。整个溶液通过轻轻地旋转板且在37C下培育6小时而混合。接着将融合体用PBS洗涤,再悬浮于PBS中且保持于冰上。

另外参见Liang等人,通过Cas9蛋白转染进行快速高效的哺乳动物细胞工程化,《生物技术杂志》208:44-53,2015。

实例27:具有脂质双层结构的融合体

此实例描述融合体的组合物。在一个实施例中,融合体组合物将包含在中心具有内腔的脂质双层结构。

不希望受理论束缚,融合体的脂质双层结构促进与靶细胞的融合,且允许融合体装载不同的治疗剂。

使用先前实例中所述的方法新制融合体。阳性对照为天然细胞系(HEK293),且阴性对照为冷DPBS和膜破裂的HEK293细胞制剂,其已穿过36号针50次。

将样品在埃彭道夫管(Eppendorf tube)中短暂离心,且小心地去除上清液。接着将预温热的固定液(2.5%戊二醛于0.05M二甲胂酸盐与0.1M NaCl的缓冲液,pH 7.5中;使用前保持于37℃下30分钟)添加至样品集结粒且保持在室温下20分钟。在固定之后,将样品用PBS洗涤两次。将四氧化锇溶液添加至样品集结粒且培育30分钟。在用PBS冲洗一次之后,添加30%、50%、70%和90%己二醇且涡旋洗涤,每次15分钟。接着在涡旋下添加100%己二醇3次,每次10分钟。

将树脂与己二醇以1:2的比率组合,且接着添加至样品且在室温下培育2小时。在培育之后,将溶液用100%树脂替换且培育4-6小时。用新鲜的100%树脂再重复此步骤一次。接着将其用100%新鲜树脂替换,将水平调节为约1-2mm深度,且烘烤8-12小时。切开埃彭道夫管且将与样品一起浇铸的环氧树脂片再烘烤16-24小时。接着将环氧树脂铸件切割成小块,记下具有细胞的一侧。使用市售的5分钟环氧胶将小片粘合到块上以进行切片。透射电子显微镜(JOEL,USA)用于在80kV的电压下对样品成像。

在一个实施例中,融合体将显示与阳性对照(HEK293细胞)类似的脂质双层结构,且在DPBS对照中未观察到明显的结构。在一个实施例中,在破坏的细胞制剂中将不会观察到管腔结构。

实例28:检测融合剂表达

此实例定量融合体中的融合剂表达。

将包括嘌呤霉素抗性基因的开放阅读框架连同克隆片段的开放阅读框架的转座酶载体(System Biosciences,Inc.)(例如来自水泡性口炎病毒的糖蛋白[VSV-G],OxfordGenetics#OG592)使用电穿孔器(Amaxa)和293T细胞系特异性核转染试剂盒(Lonza)电穿孔至293Ts中。

在含有20%胎牛血清和1×青霉素/链霉素的DMEM中用1μg/μL嘌呤霉素选择3-5天后,通过先前实例中所述的任一种方法由稳定表达的细胞系或对照细胞制备融合体。

接着将融合体用1×PBS,冰冷的溶解缓冲液(150mM NaCl、0.1%Triton X-100、0.5%脱氧胆酸钠、0.1%SDS、50mM Tris-HCl,pH 8.0和蛋白酶抑制剂混合液III(Abcam,ab201117))洗涤,超声处理3次,每次10-15秒,且以16,000×g离心20分钟。用特异性针对VSV-G的探针对回收的上清液级分进行蛋白质印迹,以确定来自由稳定转染的细胞或对照细胞制备的融合体的VSV-G的非膜特异性浓度且相比于VSV-G蛋白的标准。

在一个实施例中,来自稳定转染的细胞的融合体将比从未被稳定转染的细胞产生的融合体具有更多VSV-G。

实例29:融合剂的定量

此实例描述每个融合体中融合剂的绝对数的定量。

通过先前实例中所述的任一种方法产生融合体组合物,除了如前述实例中所述地对融合体进行工程化以表达用GFP标记的融合剂(VSV-G)。另外,在不存在融合剂(VSV-G)或GFP的情况下对阴性对照融合体进行工程化。

接着如下地分析具有GFP标记的融合剂的融合体和阴性对照的融合剂的绝对数。连续稀释商业上获得的重组GFP以产生蛋白质浓度的校准曲线。接着使用GFP光立方体(469/35激发滤光片和525/39发射滤光片)在荧光计中测量校准曲线和已知数量的融合体的样品的GFP荧光,以计算融合体制剂中GFP分子的平均摩尔浓度。接着将摩尔浓度转换为GFP分子的数目且除以每个样品的融合体数目,以获得每个融合体的GFP标记的融合剂分子的平均数目,且因此提供每个融合体的融合剂数目的相对估计。

在一个实施例中,相比于其中不存在融合剂或GFP的阴性对照,具有GFP标签的融合体中的GFP荧光将更高。在一个实施例中,GFP荧光是相对于存在的融合剂分子的数目。

或者,根据制造商的说明书使用单一细胞制备系统(Fluidigm)分离单个的融合体,且使用市售的探针组(Taqman)和被设计成基于Ct值定量融合剂或GFP cDNA水平的预混液进行qRT-PCR。通过合成(Amsbio)产生与融合剂基因或GFP基因的克隆片段具有相同序列的RNA标准品,且接着以连续稀释添加至单一细胞制备系统qRT-PCR实验反应,以建立Ct相对于融合剂或GFP RNA浓度的标准曲线。

将来自融合体的Ct值相比于标准曲线以确定每个融合体的融合剂或GFP RNA的量。

在一个实施例中,相比于其中不存在融合剂或GFP的阴性对照,被工程化以表达融合剂的融合体中的融合剂和GFP RNA将更高。

通过如先前所述地分析脂质双层结构和如本文其它实例中所述地通过LC-MS定量脂质双层中的融合剂,可进一步定量脂质双层中的融合剂。

实例30:测量融合体的平均尺寸

此实例描述融合体平均尺寸的测量。

通过先前实例中所述的任一种方法来制备融合体。使用市售的系统(iZONScience)测量融合体以确定平均尺寸。将系统与软件(根据制造商的说明)和纳米孔一起使用,被设计成分析40nm至10μm尺寸范围内的粒子。将融合体和亲本细胞再悬浮于磷酸盐缓冲盐水(PBS)中以达到0.01-0.1μg蛋白质/mL的最终浓度范围。如下表中所指示地调节其它仪器设置:

表6:融合体测量参数和设置

Figure BDA0002356542560001651

Figure BDA0002356542560001661

在分离后的2小时内分析所有融合体。在一个实施例中,相比于亲本细胞,融合体的尺寸将在约1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大内。

实例31:测量融合体的平均尺寸分布

此实例描述测量融合体的尺寸分布。

通过先前实例中所描述的任一种方法产生融合体,且使用如先前实例中描述的市售系统进行测试以确定粒子的平均尺寸。在一个实施例中,将以大约中值为中心的10%、50%和90%的融合体的尺寸阈值相比于亲本细胞以评估融合体尺寸分布。

在一个实施例中,融合体将在10%、50%或90%的样品内具有亲本细胞的尺寸分布变化性的小于约90%、80%、70%、60%、50%、40%、30%、20%、10%、5%或更小。

实例32:融合体的平均体积

此实例描述测量融合体的平均体积。不希望受理论束缚,改变融合体的尺寸(例如体积)可使其对于不同的货物装载、治疗设计或应用为通用的。

如先前实例中所述地制备融合体。阳性对照为HEK293细胞或具有已知尺寸的聚苯乙烯珠粒。阴性对照为穿过36号针大致50次的HEK293细胞。

如先前实例中所述的用透射电子显微镜分析用于确定融合体的尺寸。测量融合体的直径且接着计算体积。

在一个实施例中,融合体将具有大致50nm或更大直径的平均尺寸。

实例33:融合体的平均密度

通过如Théry等人,《细胞生物学实验指南》2006年4月;第3章:第3.22节中所述的连续蔗糖梯度离心分析来测量融合体密度。如先前实例中所述地获得融合体。

首先,制备蔗糖梯度。分别通过混合4ml HEPES/蔗糖储备溶液和1ml HEPES储备溶液或0.5ml HEPES/蔗糖储备溶液和4.5ml HEPES储备溶液来产生2M和0.25蔗糖溶液。将这两个部分装入关闭所有挡板的梯度仪中,2M蔗糖溶液在具有磁力搅拌棒的近端隔室中,且0.25M蔗糖溶液在远端隔室中。将梯度仪置于磁性搅拌板上,打开近端与远端隔室之间的挡板且开启磁性搅拌板。如下制成HEPES储备溶液:2.4g N-2-羟基乙基哌嗪-N'-2-乙磺酸(HEPES;最终20mM),300H2O,用10N NaOH将pH调节至7.4且最后用H2O将体积调节至500ml。如下制成HEPES/蔗糖储备溶液:2.4g羟基乙基哌嗪-N'-2-乙磺酸(HEPES;最终20mM),428g无蛋白酶的蔗糖(ICN;最终2.5M),150ml H2O,用10N NaOH将pH调节至7.4且最后用H2O将体积调节至500ml。

将融合体再悬浮于2ml HEPES/蔗糖储备溶液中且倒入SW 41离心管的底部。将外管置于SW 41管中,恰好在2ml融合体上方。打开外挡板,且将连续的2M(底部)至0.25M(顶部)蔗糖梯度缓慢倒入融合体的顶部上。SW 41管在倒入梯度时降低,以使得管路始终略高于液体顶部。

所有具有梯度的管彼此平衡,或与具有相同重量的蔗糖溶液的其它管平衡。将梯度液在4℃下在制动器设置于低位的SW 41旋转铲斗转子中以210,000×g离心过夜(≥14小时)。

使用微量移液器从上到下收集十一份1ml级分且置于用于TLA-100.3转子的3ml管中。将样品放在一旁,且在96孔板的单独孔中将50μl的每一级分用于测量折射率。板用粘性箔覆盖以防止蒸发且在室温下储存不超过1小时。折射计用于测量10至20μl的来自96孔板中储存的材料的每一级分的折射率(因此测量蔗糖浓度和密度)。

在可从Beckman网站下载的超速离心目录中可获得将折射率转换为g/ml的表格。

接着准备每一级分用于蛋白质含量分析。将2毫升20mM HEPES,pH 7.4添加至每个1ml梯度级分,且通过上下移液2至3次而混合。每个管的一侧标有永久性标记,且将管置于TLA-100.3转子,标记侧朝上。

将具有稀释的级分的3ml管在110,000×g,4℃下离心1小时。TLA-100.3转子容纳六个管,因此每个梯度进行两次离心,将其它管保持于4℃下直至其可离心。

从每个3ml管吸出上清液,在集结粒顶部留一滴。集结粒很可能不可见,但可从管上的标记推断出其位置。将不可见的集结粒再悬浮且转移至微量离心管。将每个再悬浮的级分的一半用于通过二喹啉甲酸分析进行蛋白质含量分析,如另一实例中所述。这提供跨融合体制剂的各个梯度级分的分布。此分布用于确定融合体的平均密度。将另外一半体积的级分储存于-80℃下且一旦蛋白质分析展现跨级分的融合体分布便用于其它目的(例如功能分析,或通过免疫分离进一步纯化)。

在一个实施例中,使用此分析,融合体的平均密度将为1.25g/ml+/-0.05标准差。在一个实施例中,融合体的平均密度将在1-1.1、1.05-1.15、1.1-1.2、1.15-1.25、1.2-1.3或1.25-1.35范围内。在一个实施例中,融合体的平均密度将小于1或大于1.35。

实例34:测量融合体中的细胞器含量

此实例描述检测融合体中的细胞器。

如本文所述地制备融合体。为了检测内质网(ER)和线粒体,将融合体或C2C12细胞用1μM ER染色剂(E34251,Thermo Fisher,Waltham,MA)和1μM线粒体染色剂(M22426,Thermo Fisher Waltham,MA)染色。为了检测溶酶体,将融合体或细胞用50nM溶酶体染色剂(L7526,Thermo Fisher,Waltham,MA)染色。

将染色的融合体在流式细胞仪(Thermo Fisher,Waltham,MA)上运行且根据下表测量每种染料的荧光强度。通过比较染色的融合体与未染色的融合体(阴性对照)和染色的细胞(阳性对照)的荧光强度来验证细胞器的存在。

在去核后5小时,内质网(图1)、线粒体(图2)和溶酶体(图3)的融合体染色呈阳性。

表7:融合体染色

染色剂 Attune激光/滤光片 激光波长 发射滤光片(nm)
Hoechst 33342 VL1 405 450/40
ER-Tracker Green BL1 488 530/30
MitoTracker Deep Red FM RL1 638 670/14
LysoTracker Green BL1 488 530/30

实例35:测量融合体中的核含量

此实例描述测量融合体中的核含量的一个实施例。为了验证融合体不含核,将融合体用1μg·mL-1Hoechst 33342和1μM CalceinAM(C3100MP,Thermo Fisher,Waltham,MA)染色且将染色的融合体在Attune NXT流式细胞仪(Thermo Fisher,Waltham,MA)上运行以根据下表确定每种染料的荧光强度。在一个实施例中,将通过比较染色的融合体与未染色的融合体和染色的细胞的平均荧光强度来验证存在细胞溶质(CalceinAM)和不存在细胞核(Hoechst 33342)。

表8:流式细胞仪设置

染色剂 Attune激光/滤光片 激光波长 发射滤光片(nm)
Hoechst 33342 VL1 405 450/40
Calcein AM BL1 488 530/30

实例36:测量核被膜含量

此实例描述测量去核的融合体中的核被膜含量。核被膜从细胞的细胞质分离DNA。

在一个实施例中,纯化的融合体组合物包含已如本文所述去核的哺乳动物细胞,如HEK-293Ts(293[HEK-293](

Figure BDA0002356542560001691

CRL-1573TM)。此实例描述不同核膜蛋白的定量,作为测量在融合体产生之后剩余的完整核膜的量的代替。

在此实例中,将10×106个HEK-293Ts和等量的由10×106个HEK-293Ts制备的融合体用3.7%PFA固定15分钟,用1×PBS缓冲液,pH 7.4洗涤且同时渗透,且接着使用含有1%牛血清白蛋白和0.5%

Figure BDA0002356542560001692

X-100的1×PBS缓冲液,pH 7.4阻断15分钟。在渗透之后,将融合体和细胞与不同的一级抗体,例如(抗RanGAP1抗体[EPR3295](Abcam-ab92360)、抗NUP98抗体[EPR6678]-核孔标记(Abcam-ab124980)、抗核孔复合物蛋白抗体[Mab414]-(Abcam-ab24609)、抗输入蛋白7抗体(Abcam-ab213670)一起在4℃下培育12小时,所述一级抗体以制造商建议的浓度在含有1%牛血清白蛋白和0.5%

Figure BDA0002356542560001693

X-100的1×PBS缓冲液,pH 7.4中稀释。接着将融合体和细胞用1×PBS缓冲液,pH 7.4洗涤,且与适当的荧光二级抗体一起在21℃下培育2小时,所述二级抗体检测先前指定的一级抗体,以制造商建议的浓度在含有1%牛血清白蛋白和0.5%清洁剂的1×PBS缓冲液,pH 7.4中稀释。接着将融合体和细胞用1×PBS缓冲液洗涤,再悬浮于300μL含有1μg/ml Hoechst 33342的1×PBS缓冲液,pH 7.4中,通过20μm FACS管过滤且通过流式细胞测量术分析。

阴性对照使用相同染色程序产生,但不添加一级抗体。在FACS细胞仪(BectonDickinson,San Jose,CA,USA)上以488nm氩气激光激发进行流式细胞测量术,且收集530+/-30nm发射光谱。FACS采集软件用于采集和分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。相对完整的核膜含量是基于每个样品中荧光的中值强度计算所得的。在正向和侧向散射通道中捕获所有事件。

通过从融合体的中值荧光强度值减去对应阴性对照样品的中值荧光强度值来确定融合体的标准化荧光强度值。接着将融合体样品的标准化荧光相对于对应有核细胞样品进行标准化,以产生完整核膜含量的定量测量值。

在一个实施例中,相比于有核的亲本细胞,去核的融合体将包含小于1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%荧光强度或核被膜含量。

实例37:测量染色质水平

此实例描述测量去核的融合体中的染色质。

DNA可浓缩成染色质以使其在细胞核内适合。在一个实施例中,通过本文所描述的任一种方法产生的纯化的融合体组合物将包含低水平的染色质。

使用ELISA以特异性针对组蛋白H3或组蛋白H4的抗体分析通过先前描述的任一种方法制备的去核的融合体和阳性对照细胞(例如亲本细胞)的染色质含量。组蛋白为染色质的主要蛋白质组分,且H3和H4为主要的组蛋白。

使用商业试剂盒(例如Abcam组蛋白提取试剂盒(ab113476))或本领域已知的其它方法从融合体制剂和细胞制剂提取组蛋白。将这些等分试样储存在-80C下直至使用。通过在分析缓冲液的溶液中将纯化的组蛋白(H3或H4)稀释为1至50ng/μl来制备标准连续稀释液。分析缓冲液可源自由制造商供应的试剂盒(例如Abcam组蛋白H4总定量试剂盒(ab156909)或Abcam组蛋白H3总定量试剂盒(ab115091))。将分析缓冲液添加至用抗组蛋白H3或抗H4抗体涂布的48或96孔板的每个孔,且将样品或标准对照添加至孔以使每个孔的总体积达到50μl。接着将板覆盖且在37℃下培育90至120分钟。

在培育之后,准备结合至与板连接的抗组蛋白抗体的任何组蛋白用于检测。吸出上清液且将板用150μl洗涤缓冲液洗涤。接着将包括抗组蛋白H3或抗H4捕获抗体的捕获缓冲液以50μl的体积和1μg/mL的浓度添加至板。接着将板在室温下在定轨振荡器上培育60分钟。

随后,将板吸出且使用洗涤缓冲液洗涤6次。接着将可被捕获抗体活化的信号报告分子添加至每个孔。将板覆盖且在室温下培育30分钟。接着将板吸出且使用洗涤缓冲液洗涤4次。通过添加终止溶液来终止反应。读取板中的每个孔在450nm处的吸光度,且根据450nm处的吸光度相对于标准样品中组蛋白的浓度的标准曲线计算每个样品中组蛋白的浓度。

在一个实施例中,融合体样品将包含有核的亲本细胞的组蛋白浓度的小于1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%。

实例38:测量融合体中的DNA含量

此实例描述相对于有核对应物的融合体中的DNA量的定量。在一个实施例中,融合体将具有比有核对应物少的DNA。通过测量总DNA或特定管家基因的水平来确定核酸水平。在一个实施例中,具有减少的DNA含量或基本上缺少DNA的融合体将不能复制、分化或转录基因,确保当向个体施用时其剂量和功能不改变。

通过先前实例中所述的任一种方法来制备融合体。如根据融合体和源细胞的蛋白质所测量的相同质量的制剂用于分离总DNA(例如使用试剂盒,如Qiagen DNeasy目录号69504),接着使用标准光谱法测定DNA浓度,以评估DNA的吸光度(例如使用ThermoScientific NanoDrop)。

在一个实施例中,去核的融合体中的DNA的浓度将为亲本细胞中的小于约50%、40%、30%、20%、10%、5%、4%、3%、2%、1%或更小。

或者,可使用半定量实时PCR(RT-PCR)在有核细胞与融合体之间比较特定管家基因(如GAPDH)的浓度。从亲本细胞和融合体分离总DNA且如本文所述地测量DNA浓度。使用以下反应模板用PCR试剂盒(Applied Biosystems,目录号4309155)进行RT-PCR:

Figure BDA0002356542560001711

正向和反向引物获自Integrated DNA Technologies。下表详述引物对和其相关序列:

表9:引物序列

Figure BDA0002356542560001712

实时PCR系统(Applied Biosystems)用于通过以下方案进行扩增和检测:

变性,94℃ 2分钟

以下顺序的40个循环:

变性,94℃ 15秒

结合,延伸,60℃ 1分钟

用GAPDH DNA的连续稀释液制备Ct相对于DNA浓度的标准曲线且用于将来自融合体PCR结果的Ct核值标准化为DNA的特定量(ng)。

在一个实施例中,去核的融合体中的GAPDH DNA的浓度将为亲本细胞中的小于约50%、40%、30%、20%、10%、5%、4%、3%、2%、1%或更小。

实例39:测量融合体中的miRNA含量

此实例描述融合体中的微RNA(miRNA)的定量。在一个实施例中,融合体包含miRNA。

miRNA为控制信使RNA(mRNA)翻译成蛋白质的速率(以及其它活动)的调节元件。在一个实施例中,携带miRNA的融合体可用于将miRNA递送至靶位点。

通过先前实例中所述的任一种方法来制备融合体。如先前所述地制备来自融合体或亲本细胞的RNA。至少一个miRNA基因选自www.sanger.ac.uk/Software/Rfam/mirna/index.shtml处的Sanger Center miRNA Registry。如Chen等人,《核酸研究(NucleicAcids Research)》,33(20),2005中所述地制备miRNA。通过Thermo Fisher(A25576。Waltham,MA)可获得所有TaqMan miRNA分析。

根据制造商的说明书对miRNA cDNA进行qPCR,且使用实时PCR系统如本文所述地产生和分析CT值。

在一个实施例中,融合体的miRNA含量将为其亲本细胞的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。

实例40:定量融合体中的内源RNA或合成RNA的表达

此实例描述定量具有改变的表达的内源RNA或在融合体中表达的合成RNA的水平。

融合体或亲本细胞被工程化以改变介导对融合体的细胞功能的内源或合成RNA的表达。

转座酶载体(System Biosciences,Inc.)包括嘌呤霉素抗性基因的开放阅读框架连同蛋白质药剂的克隆片段的开放阅读框架。使用电穿孔器(Amaxa)和293T细胞系特异性核转染试剂盒(Lonza)将载体电穿孔至293Ts中。

在含有20%胎牛血清和1×青霉素/链霉素的DMEM中用嘌呤霉素选择3-5天后,通过先前实例中所描述的任一种方法由稳定表达的细胞系制备融合体。

如先前实例中所述地分离个别的融合体且定量每个融合体的蛋白质药剂或RNA。

在一个实施例中,融合体将具有每个融合体至少1、2、3、4、5、10、20、50、100、500、103、5.0×103、104、5.0×104、105、5.0×105、106、5.0×106或更多个RNA。

实例41:测量融合体中的脂质组成

此实例描述定量融合体的脂质组成。在一个实施例中,融合体的脂质组成与衍生其的细胞类似。脂质组成影响融合体和细胞的重要生物物理参数,如尺寸、静电相互作用和胶体特性。

脂质测量是基于质谱。通过先前实例中所述的任一种方法来制备融合体。

如(Sampaio等人,《美国国家科学院院刊》,2011年2月1日;108(5):1903-7)所述,在脂质分析服务机构(Dresden,Germany)进行基于质谱的脂质分析。使用两步氯仿/甲醇程序提取脂质(Ejsing等人,《美国国家科学院院刊》,2009年3月17日;106(7):2136-41)。用以下的内部脂质标准混合物加标样品:心磷脂16:1/15:0/15:0/15:0(CL)、神经酰胺18:1;2/17:0(Cer)、二酰甘油17:0/17:0(DAG)、己糖基神经酰胺18:1;2/12:0(HexCer)、溶血磷脂酸酯17:0(LPA)、溶血磷脂酰胆碱12:0(LPC)、溶血磷脂酰乙醇胺17:1(LPE)、溶血磷脂酰甘油17:1(LPG)、溶血磷脂酰肌醇17:1(LPI)、溶血磷脂酰丝氨酸17:1(LPS)、磷脂酸酯17:0/17:0(PA)、磷脂酰胆碱17:0/17:0(PC)、磷脂酰乙醇胺17:0/17:0(PE)、磷脂酰甘油17:0/17:0(PG)、磷脂酰肌醇16:0/16:0(PI)、磷脂酰丝氨酸17:0/17:0(PS)、胆固醇酯20:0(CE)、鞘磷脂18:1;2/12:0;0(SM)和三酰甘油17:0/17:0/17:0(TAG)。

在提取之后,将有机相转移至输液板且在速度真空浓缩器中干燥。将第一步干提取物再悬浮于含7.5mM乙酸铵的氯仿/甲醇/丙醇(1:2:4,V:V:V)中且将第二步干提取物再悬浮于甲胺于氯仿/甲醇中的33%乙醇溶液(0.003:5:1;V:V:V)中。所有液体处理步骤均使用用于有机溶剂的机器人平台进行,所述平台具有用于移液的防液滴控制特征(HamiltonRobotics)。

在配备有离子源(Advion Biosciences)的质谱仪(Thermo Scientific)上通过直接输注来分析样品。在单次采集中,以正离子和负离子模式分析样品,其中MS的分辨率为Rm/z=200=280000且串联MS/MS实验的分辨率为Rm/z=200=17500。MS/MS由包含列表触发,所述列表涵盖以1Da增量扫描的对应MS质量范围(Surma等人,《欧洲脂质科学与技术杂志(Eur J lipid Sci Technol)》,2015年10月;117(10):1540-9)。将MS和MS/MS数据组合,以监测作为铵加合物的CE、DAG和TAG离子;作为乙酸盐加合物的PC、PC O-;和作为去质子化阴离子的CL、PA、PE、PE O-、PG、PI和PS。仅MS用于监测作为去质子化阴离子的LPA、LPE、LPEO-、LPI和LPS;作为乙酸盐的Cer、HexCer、SM、LPC和LPC O-。

用内部开发的脂质鉴别软件分析数据,如以下参考文献中所述(Herzog等人,《基因组生物学(Genome Biol)》,2011年1月19日;12(1):R8;Herzog等人,《公共科学图书馆·综合(PLoS One)》,2012年1月;7(1):e29851)。仅将信噪比>5,且信号强度比对应空白样品中高5倍的脂质鉴别考虑用于进一步的数据分析。

将融合体脂质组成与亲本细胞的脂质组成相比。在一个实施例中,如果亲本细胞中>50%的鉴别的脂质存在于融合体中,则融合体和亲本细胞将具有类似的脂质组成,且在那些鉴别的脂质中,融合体中的水平将为亲本细胞中的对应脂质水平的>25%。

实例42:测量融合体中的蛋白质组学组成

此实例描述定量融合体的蛋白质组成。在一个实施例中,融合体的蛋白质组成将与衍生其的细胞类似。

通过先前实例中所述的任一种方法来制备融合体。将融合体再悬浮于溶解缓冲液(7M脲、2M硫脲、4%(w/v)Chaps于50mM Tris中,pH 8.0)中且在室温下在偶尔涡旋的情况下培育15分钟。接着通过在冰浴中超声处理5分钟将混合物溶解且以13,000RPM短暂离心5分钟。通过比色分析(Pierce)确定蛋白质含量且将每个样品的蛋白质转移至新试管中且用50mM Tris pH 8平衡体积。

将蛋白质在65℃下用10mM DTT还原15分钟且在室温下在黑暗中用15mM碘乙酰胺烷基化30分钟。通过逐渐添加6体积的冷(-20℃)丙酮使蛋白质沉淀,且在-80℃下培育过夜。用冷(-20℃)甲醇洗涤蛋白质集结粒3次。将蛋白质再悬浮于50mM Tris pH 8.3中。

随后,在消化的前4小时内在37℃下在搅拌下将胰蛋白酶/lysC添加至蛋白质。将样品用50mM Tris pH 8稀释,且将0.1%脱氧胆酸钠与更多胰蛋白酶/lysC一起添加以在37℃下在搅拌下消化过夜。停止消化且通过添加2%v/v甲酸来去除脱氧胆酸钠。将样品涡旋且通过以13,000RPM离心1分钟来清除。通过逆相固相萃取(SPE)来纯化肽且干燥。将样品在20μl的3%DMSO、0.2%甲酸的水溶液中复原且通过LC-MS分析。

为了进行定量测量,还在仪器上运行蛋白质标准品。将标准肽(Pierce,等摩尔,LC-MS级,#88342)稀释至4、8、20、40和100fmol/μl且通过LC-MS/MS进行分析。对于每种浓度,计算每种蛋白质的5个最佳肽(每个肽3个MS/MS过渡)的平均AUC(曲线下面积)以产生标准曲线。

用高分辨率质谱仪(ABSciex,Foster City,CA,USA)进行采集,所述质谱仪配备有具有25μm iD毛细管的电喷雾接口且与微超高效液相色谱仪(μUHPLC)(Eksigent,RedwoodCity,CA,USA)耦接。分析软件用于控制仪器以及进行数据处理和采集。将源电压设置为5.2kV且维持于225℃下,将气帘气设置为27psi,将气体一设置为12psi且将气体二设置为10psi。对于蛋白质数据库,以信息相关采集(IDA)模式进行采集,且对于样品,以SWATH采集模式进行采集。在维持于60℃下的0.3μm i.d.,2.7μm粒子,150mm长的逆相色谱柱(AdvanceMaterials Technology,Wilmington,DE)上进行分离。样品通过环路过满注入5μL环路中。对于120分钟(样品)LC梯度,移动相包括以下:流动速率为3μL/min的溶剂A(0.2%v/v甲酸和3%DMSO v/v于水中)和溶剂B(0.2%v/v甲酸和3%DMSO于EtOH中)。

对于蛋白质的绝对定量,使用每种蛋白质的5个最佳肽(每个肽3MS/MS离子)的AUC的总和产生标准曲线(5点,R2>0.99)。为了产生用于样品分析的数据库,对12个样品中的每一个运行DIAUmpire算法且与输出MGF文件合并到一个数据库中。此数据库与软件(ABSciex)一起使用,以使用5个过渡/肽和5个肽/蛋白质最大值定量每个样品中的蛋白质。如果计算的评分高于1.5或FDR<1%,则将肽视为被充分测量。将每个充分测量的肽的AUC的总和绘制于标准曲线上,且报告为fmol。

接着如下地分析所得蛋白质定量数据,以确定已知类别的蛋白质的蛋白质水平和比例:酶被鉴别为用酶委员会(EC)编号注释的蛋白质;ER相关蛋白被鉴别为具有ER而非线粒体的Gene Ontology(GO;http://www.geneontology.org)细胞区室分类的蛋白质;外泌体相关蛋白被鉴别为具有外泌体而非线粒体的Gene Ontology细胞区室分类的蛋白质;且线粒体蛋白被鉴别为在MitoCarta数据库中被鉴别为线粒体的蛋白质(Calvo等人,NAR2015l doi:10.1093/nar/gkv1003)。将这些类别中的每一个的摩尔比确定为每类中的所有蛋白质的摩尔量的总和除以每个样品中所有鉴别的蛋白质的摩尔量的总和。

将融合体蛋白质组学组成相比于亲本细胞蛋白质组学组成。在一个实施例中,当>50%的鉴别的蛋白质存在于融合体中时,将观察到融合体与亲本细胞之间类似的蛋白质组学组成,且在那些鉴别的蛋白质中,水平为亲本细胞中的对应蛋白质水平的>25%。

实例43:定量每个融合体的内源或合成蛋白水平

此实例描述定量融合体中的内源或合成蛋白货物。在一个实施例中,融合体包含内源或合成蛋白货物。

融合体或亲本细胞被工程化,以改变内源蛋白的表达或表达介导治疗性或新颖细胞功能的合成货物。

转座酶载体(System Biosciences,Inc.)包括嘌呤霉素抗性基因的开放阅读框架连同蛋白质药剂的克隆片段的开放阅读框架,任选地翻译融合至绿色荧光蛋白(GFP)的开放阅读框架。使用电穿孔器(Amaxa)和293T细胞系特异性核转染试剂盒(Lonza)将载体电穿孔至293Ts中。

在含有20%胎牛血清和1×青霉素/链霉素的DMEM中用嘌呤霉素选择3-5天后,通过先前实例中所描述的任一种方法由稳定表达的细胞系制备融合体。

如上文所述地根据质谱定量内源蛋白的改变的表达水平或未融合至GFP的合成蛋白的表达水平。在一个实施例中,融合体将具有每个融合体至少1、2、3、4、5、10、20、50、100、500、103、5.0×103、104、5.0×104、105、5.0×105、106、5.0×106个或更多个蛋白质药剂分子。

或者,将纯化的GFP在含有20%胎牛血清和1×青霉素/链霉素的DMEM中连续稀释以产生蛋白质浓度的标准曲线。使用GFP光立方(469/35激发滤光片和525/39发射滤光片)在荧光计(BioTek)中测量标准曲线和融合体样品的GFP荧光,以计算融合体中的GFP分子的平均摩尔浓度。接着将摩尔浓度转换成GFP分子的数目除以每个样品的融合体的数目以获得每个融合体的蛋白质药剂分子的平均数目。

在一个实施例中,融合体将具有每个融合体至少1、2、3、4、5、10、20、50、100、500、103、5.0×103、104、5.0×104、105、5.0×105、106、5.0×106个或更多个蛋白质药剂分子。

实例44:测量融合体中的外泌体蛋白的标记

此分析描述样品制剂的蛋白质组学组成的定量,且定量了已知是外泌体的特异性标记的蛋白质的比例。

根据标准生物样品处理程序,将融合体粒化且冷冻运送至蛋白质组学分析中心。

将融合体解冻以用于蛋白质提取和分析。首先,将其再悬浮于溶解缓冲液(7M脲、2M硫脲、4%(w/v)chaps于50mM Tris中,pH 8.0)中且在室温下在偶尔涡旋的情况下培育15分钟。接着通过在冰浴中超声处理5分钟将混合物溶解且以13,000RPM短暂离心5分钟。通过比色分析(Pierce)测定总蛋白含量且将来自每个样品的100μg蛋白质转移至新试管中且用50mM Tris pH 8调节体积。

将蛋白质在65℃下用10mM DTT还原15分钟且在室温下在黑暗中用15mM碘乙酰胺烷基化30分钟。接着通过逐渐添加6体积的冷(-20℃)丙酮使蛋白质沉淀,且在-80℃下培育隔夜。

将蛋白质粒化,用冷(-20℃)甲醇洗涤3次,且再悬浮于50mM Tris pH 8中。在消化的前4小时内在37℃下在搅拌下将3.33μg胰蛋白酶/lysC添加至蛋白质。将样品用50mMTris pH 8稀释,且将0.1%脱氧胆酸钠与另外3.3μg胰蛋白酶/lysC一起添加以在37℃下在搅拌下消化过夜。停止消化且通过添加2%v/v甲酸来去除脱氧胆酸钠。将样品涡旋且通过以13,000RPM离心1分钟来清除。

通过逆相固相萃取(SPE)来纯化蛋白质且干燥。如先前所述,将样品在3%DMSO、0.2%甲酸的水溶液中复原且通过LC-MS进行分析。

分析所得的蛋白质定量数据,以确定已知外泌体标记蛋白质的蛋白质水平和比例。确切地说:四跨膜蛋白家族蛋白(例如CD63、CD9或CD81)、ESCRT相关蛋白(例如TSG101、CHMP4A-B或VPS4B)、Alix、TSG101、MHCI、MHCII、GP96、辅肌动蛋白-4、线粒体内膜蛋白、同线蛋白-1、TSG101、ADAM10、EHD4、同线蛋白-1、TSG101、EHD1、脂阀结构蛋白-1、热休克70kDa蛋白(HSC70/HSP73、HSP70/HSP72)。将这些外泌体标记蛋白质相对于所有测量的蛋白质的摩尔比确定为以上列出的每种特定外泌体标记蛋白质的摩尔量除以每个样品中所有鉴别的蛋白质的摩尔量的总和且表示为%。

类似地,将所有外泌体标记蛋白质相对于所有测量的蛋白质的摩尔比确定为以上列出的所有特定外泌体标记蛋白质的摩尔量的总和除以每个样品中所有鉴别的蛋白质的摩尔量的总和且表示为总数的%。

在一个实施例中,使用此方法,样品将包含小于5%的任何单独的外泌体标记蛋白质和小于15%的总外泌体标记蛋白质。

在一个实施例中,任何单独的外泌体标记蛋白质将以小于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%或10%存在。

在一个实施例中,所有外泌体标记蛋白质的总和将为小于0.05%、0.1%、0.5%、1%、2%、3%、4%、5%、10%、15%、20%或25%。

实例45:测量融合体中的GAPDH

此分析描述定量融合体中的甘油醛3-磷酸脱氢酶(GAPDH)的水平,和与亲本细胞相比,融合体中的GAPDH的相对水平。

根据制造商的说明,使用用于GAPDH的标准市售ELISA(ab176642,Abcam)在亲本细胞和融合体中测量GAPDH。

以用于测量GAPDH的样品的相同体积,如先前所述地通过二喹啉甲酸分析来类似地测量总蛋白质水平。在实施例中,使用此分析,融合体中的GAPDH/总蛋白质的的水平将为<100ng GAPDH/μg总蛋白质。类似地,在实施例中,从亲本细胞到融合体的GAPDH水平相对于总蛋白质的降低将为大于10%降低。

在一个实施例中,以ng GAPDH/μg总蛋白质计的制剂中的GAPDH含量将为小于500、小于250、小于100、小于50、小于20、小于10、小于5或小于1。

在一个实施例中,从亲本细胞到制剂的以ng/μg计的GAPDH/总蛋白质的降低将为大于1%、大于2.5%、大于5%、大于10%、大于15%、大于20%、大于30%、大于40%、大于50%、大于60%、大于70%、大于80%或大于90%。

实例46:测量融合体中的钙联蛋白

此分析描述定量融合体中的钙联蛋白(CNX)水平,和与亲本细胞相比,融合体中的CNX的相对水平。

根据制造商的说明,使用用于钙联蛋白的标准市售ELISA(MBS721668,MyBioSource)在起始细胞和制剂中测量钙联蛋白。

以用于测量钙联蛋白的样品的相同体积,如先前所述地通过二喹啉甲酸分析来类似地测量总蛋白质水平。在实施例中,使用此分析,融合体中的钙联蛋白/总蛋白质的的水平将为<100ng钙联蛋白/μg总蛋白质。类似地,在实施例中,从亲本细胞到融合体的钙联蛋白水平相对于总蛋白质的增加将为大于10%增加。

在一个实施例中,以ng钙联蛋白/μg总蛋白质计的制剂中的钙联蛋白含量将为小于500、250、100、50、20、10、5或1。

在一个实施例中,从亲本细胞到制剂的以ng/μg计的钙联蛋白/总蛋白质的减少将为大于1%、2.5%、5%、10%、15%、20%、30%、40%、50%、60%、70%、80%或90%。

实例47:比较可溶性与不溶性蛋白质质量

此实例描述定量融合体中的可溶性:不溶性蛋白质质量比。在一个实施例中,融合体中的可溶性:不溶性蛋白质质量比将与有核细胞类似。

通过先前实例中所述的任一种方法来制备融合体。使用标准二喹啉甲酸分析(BCA)(例如使用市售的PierceTMBCA蛋白质分析试剂盒,Thermo Fischer产品编号23225)测试融合体制剂以确定可溶性:不溶性蛋白质的比。通过将制备的融合体或亲本细胞以1×10^7个细胞或融合体/mL的浓度悬浮于PBS中,且以1600g离心以将融合体或细胞制成集结粒来制备可溶性蛋白质样品。以可溶蛋白质级分形式收集上清液。

通过剧烈移液且在具有2%Triton-X-100的PBS中涡旋来溶解集结粒中的融合体或细胞。溶解的级分表示不溶性蛋白质级分。

使用供应的BSA,每孔0至20μg(一式三份)来产生标准曲线。融合体或细胞制剂被稀释,使得测量的量在标准范围内。一式三份地分析融合体制剂且使用平均值。将可溶性蛋白质浓度除以不溶性蛋白质浓度以得到可溶性:不溶性蛋白质比。

在一个实施例中,相比于亲本细胞,融合体可溶性:不溶性蛋白质比将在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大内。

实例48:测量融合体中的LPS

此实例描述定量与亲本细胞相比,融合体中的脂多糖(LPS)的水平。在一个实施例中,融合体将具有相比于亲本细胞较低水平的LPS。

LPS是细菌膜的组分和先天免疫反应的强力诱导剂。

如先前实例中所述,LPS测量是基于质谱。

在一个实施例中,融合体的脂质含量的小于5%、1%、0.5%、0.01%、0.005%、0.0001%、0.00001%或更小将为LPS。

实例49:融合体中的脂质与蛋白质的比

此实例描述定量融合体中的脂质质量与蛋白质质量的比。在一个实施例中,融合体将具有与有核细胞类似的脂质质量与蛋白质质量的比。

总脂质含量计算为在先前实例中概述的脂质组学数据集中鉴别的所有脂质的摩尔含量的总和。通过如本文所述的二喹啉甲酸分析来测量融合体的总蛋白含量。

或者,脂质与蛋白质的比可被描述为特定脂质种类与特定蛋白质的比。特定脂质物质选自先前实例中产生的脂质组学数据。特定蛋白质选自先前实例中产生的蛋白质组学数据。所选脂质物质和蛋白质的不同组合用于定义特定的脂质:蛋白质比。

实例50:融合体中的蛋白质与DNA的比

此实例描述定量融合体中的脂质质量与DNA质量的比。在一个实施例中,融合体将具有比细胞大得多的蛋白质质量与DNA质量的比。

如先前实例中所述地测量融合体和细胞的总蛋白质含量。如先前实例中所述地测量融合体和细胞的DNA质量。接着通过将总蛋白质含量除以总DNA含量来确定蛋白质与总核酸的比,以得到典型融合体制剂的在给定范围内的比。

或者,通过使用半定量实时PCR(RT-PCR)将核酸水平定义为特定管家基因,如GAPDH的水平来确定蛋白质与核酸的比。

接着通过将总蛋白含量除以总GAPDH DNA含量来确定蛋白质与GAPDH核酸的比,以定义典型融合体制剂的蛋白质:核酸比的特定范围。

实例51:融合体中的脂质与DNA的比

此实例描述定量与亲本细胞相比,融合体中的脂质与DNA的比。在一个实施例中,与亲本细胞相比,融合体将具有更大的脂质与DNA的比。

此比率被定义为总脂质含量(在以上实例中概述)或特定脂质物质。在特定脂质物质的情况下,范围取决于所选的特定脂质物质。特定脂质物质选自前述实例中产生的脂质组学数据。如前述实例中所述地测定核酸含量。

使用标准化为核酸含量的所选脂质物质的不同组合来定义特定融合体制剂的特征性的特定脂质:核酸比。

实例52:分析融合体上的表面标记

此分析描述鉴别融合体上的表面标记。

根据标准生物样品处理程序,将融合体粒化且冷冻运送至蛋白质组学分析中心。

为了鉴别融合体上存在或不存在表面标记,将其用针对磷脂酰丝氨酸和CD40配体的标记染色且使用FACS系统(Becton Dickinson)通过流式细胞测量术分析。为了检测表面磷脂酰丝氨酸,用膜联蛋白V分析(556547,BD Biosciences)如制造商所述地分析产物。

简单来说,将融合体用冷PBS洗涤两次且接着以1×10^6个融合体/ml的浓度再悬浮于1×结合缓冲液中。将10%的再悬浮液转移至5ml培养管中且添加5μl FITC膜联蛋白V。将细胞轻轻地涡旋且在室温(25℃)下在黑暗中培育15分钟。

并行地,将单独的10%的再悬浮液转移至不同管中作为未染色的对照。将1×结合缓冲液添加至每个试管中。在1小时内通过流式细胞测量术分析样品。

在一些实施例中,使用此分析,染色的融合体群体的平均值将被确定为高于未染色的细胞的平均值,表明融合体包含磷脂酰丝氨酸。

类似地,对于CD40配体,根据制造商的说明将以下单克隆抗体添加至另外10%的洗涤的融合体:PE-CF594小鼠抗人类CD154克隆TRAP1(563589,BD Pharmigen)。简单来说,使用饱和量的抗体。并行地,将单独的10%的融合体转移至不同管中作为未染色的对照。将管在室温下以400×g离心5分钟。倒出上清液且将集结粒用流式细胞测量术洗涤溶液洗涤两次。将0.5ml的1%多聚甲醛固定剂添加至每个管。将每个管短暂涡旋且储存在4℃下,直至在流式细胞仪上进行分析。

在一个实施例中,使用此分析,染色的融合体群体的平均值将高于未染色的细胞的平均值,表明融合体包含CD40配体。

实例53:分析融合体中的病毒衣壳蛋白

此分析描述样品制剂的组成分析,且评估衍生自病毒衣壳来源的蛋白质的比例。

根据标准生物样品处理程序,将融合体粒化且冷冻运送至蛋白质组学分析中心。

将融合体解冻以用于蛋白质提取和分析。首先,将其再悬浮于溶解缓冲液(7M脲、2M硫脲、4%(w/v)chaps于50mM Tris中,pH 8.0)中且在室温下在偶尔涡旋的情况下培育15分钟。接着通过在冰浴中超声处理5分钟将混合物溶解且以13,000RPM短暂离心5分钟。通过比色分析(Pierce)测定总蛋白含量且将来自每个样品的100μg蛋白质转移至新试管中且用50mM Tris pH 8调节体积。

将蛋白质在65℃下用10mM DTT还原15分钟且在室温下在黑暗中用15mM碘乙酰胺烷基化30分钟。接着通过逐渐添加6体积的冷(-20℃)丙酮使蛋白质沉淀,且在-80℃下培育隔夜。

将蛋白质粒化,用冷(-20℃)甲醇洗涤3次,且再悬浮于50mM Tris pH 8中。在消化的前4小时内在37℃下在搅拌下将3.33μg胰蛋白酶/lysC添加至蛋白质。将样品用50mMTris pH 8稀释,且将0.1%脱氧胆酸钠与另外3.3μg胰蛋白酶/lysC一起添加以在37℃下在搅拌下消化过夜。停止消化且通过添加2%v/v甲酸来去除脱氧胆酸钠。将样品涡旋且通过以13,000RPM离心1分钟来清除。

通过逆相固相萃取(SPE)来纯化蛋白质且干燥。如先前所述,将样品在3%DMSO、0.2%甲酸的水溶液中复原且通过LC-MS进行分析。

将病毒衣壳蛋白相对于所有测量的蛋白质的摩尔比确定为所有病毒衣壳蛋白的摩尔量除以每个样品中所有鉴别的蛋白质的摩尔量的总和且表示为%。

在一个实施例中,使用此方法,样品将包含少于10%病毒衣壳蛋白。在一个实施例中,样品将包含少于0.5%、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%或90%病毒衣壳蛋白。

实例54:测量与靶细胞的融合

此实例描述定量相比于非靶细胞,融合体与靶细胞的融合。

在一个实施例中,融合体与靶细胞的融合允许将融合体的内腔中携带的货物细胞特异性地递送至受体细胞的细胞溶质。如下分析通过本文描述的方法产生的融合体与靶细胞的融合率。

在此实例中,融合体包含在其质膜上表达成肌蛋白的HEK293T细胞。另外,融合体表达mTagBFP2荧光蛋白和Cre重组酶。靶细胞为成肌细胞,其表达Myomaker和Myomixer二者,且非靶细胞为成纤维细胞,其既不表达Myomaker也不表达Myomixer。预测表达Myomaker的融合体与表达Myomaker和Myomixer二者的靶细胞融合但不与非靶细胞融合(Quinn等人,2017,《自然通讯(Nature Communications)》,8,15665.doi.org/10.1038/ncomms15665)(Millay等人,2013,《自然》,499(7458),301-305.doi.org/10.1038/nature12343)。靶细胞和非靶细胞类型均从小鼠分离且在CMV启动子下稳定表达“LoxP-stop-Loxp-tdTomato”盒,所述启动子在通过Cre重组后开启tdTomato表达,表明融合。

将靶受体细胞或非靶受体细胞涂铺于黑色的透明底部96孔板中。靶细胞和非靶细胞均对于不同融合基团进行涂铺。随后,在涂铺受体细胞之后24小时,将表达Cre重组酶蛋白和Myomaker的融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。

从融合体使用后四小时开始,对细胞孔成像以阳性地鉴别区域或孔中的RFP阳性细胞相对于GFP阳性细胞。

在此实例中,使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。通过首先在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换。

使用405nm LED和DAPI滤光立方体对Hoechst成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集靶细胞孔和非靶细胞孔的图像。

设定采集设置,以使得RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。每4小时对孔成像以采集融合活性速率的时程数据。

用与荧光显微镜一起提供的软件或其它软件(Rasband,W.S.,ImageJ,美国国家卫生研究院(U.S.National Institutes of Health),Bethesda,Maryland,USA,rsb.info.nih.gov/ij/,1997-2007)进行GFP和RFP阳性孔的分析。

使用60μm宽度的滚球背景减除算法对图像进行预处理。在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为Hoechst阳性细胞的区域。

在总细胞掩码内,通过对显著高于背景的细胞再次取阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个GFP和RFP细胞荧光来鉴别GFP和RFP阳性细胞。在含有靶受体细胞或非靶受体细胞的对照孔中鉴别的RFP阳性细胞的数目用于从含有融合体的孔中减去RFP阳性细胞的数目(以减去非特异性Loxp重组)。接着在每个时间点将RFP阳性细胞(融合的受体细胞)的数目除以GFP阳性细胞(未融合的受体细胞)与RFP阳性细胞的总和,以定量受体细胞群体内的融合体融合率。将速率标准化为施用至受体细胞的融合体的给定剂量。对于靶向融合(融合体与靶向细胞融合)的速率,从与靶细胞的融合速率减去与非靶细胞的融合速率,以定量靶向融合速率。

在一个实施例中,融合体与靶细胞的平均融合速率将在0.01-4.0RFP/GFP细胞/小时范围内(对于靶细胞融合),或为非靶受体细胞与融合体的平均融合速率的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大。在一个实施例中,未施用融合体的组将显示<0.01RFP/GFP细胞/小时的背景速率。

实例55:递送膜蛋白的体外融合

此实例描述融合体与细胞的体外融合。在一个实施例中,融合体与细胞的体外融合使得将活性膜蛋白递送至受体细胞。

在此实例中,融合体从表达仙台病毒HVJ-E蛋白的HEK293T细胞产生(Tanaka等人,2015,《基因疗法》,22(2014年10月),1-8.doi.org/10.1038/gt.2014.12)。在一个实施例中,产生融合体以表达膜蛋白GLUT4,其主要发现于肌肉和脂肪组织中且负责胰岛素调节的葡萄糖向细胞内的运输。如先前实例中所述的任何方法所述,由HEK293T细胞制备具有或不具有GLUT4的融合体。

接着用表达GLUT4的融合体、不表达GLUT4的融合体、PBS(阴性对照)或胰岛素(阳性对照)处理肌肉细胞,例如C2C12细胞。通过荧光2-脱氧葡萄糖类似物,2-[N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)氨基]-2-脱氧葡萄糖(2-NBDG)的吸收来测量GLUT4对C2C12细胞的活性。使用先前实例中所述的方法,通过显微镜评估C2C12细胞的荧光。

在一个实施例中,预期相比于用PBS或不表达GLUT4的融合体处理的C2C12细胞,用表达GLUT4和胰岛素的融合体处理的C2C12细胞展示增加的荧光。

另外参见Yang等人,《先进材料》29,1605604,2017。

实例56:膜蛋白的体内递送

此实例描述融合体与细胞的体内融合。在一个实施例中,融合体与细胞的体内融合使得将活性膜蛋白递送至受体细胞。

在此实例中,如同先前实例中,从表达仙台病毒HVJ-E蛋白的HEK293T细胞产生融合体。在一个实施例中,产生融合体以表达膜蛋白GLUT4。如先前实例中所述的任何方法所述,由HEK293T细胞制备具有或不具有GLUT4的融合体。

向BALB/c-nu小鼠施用表达GLUT4的融合体、不表达GLUT4的融合体或PBS(阴性对照)。向小鼠的胫骨前肌中肌肉内注射融合体或PBS。紧邻在融合体施用之前,使小鼠禁食12小时且注射[18F]2-氟-2脱氧-d-葡萄糖(18F-FDG),其为使得能够进行正电子发射断层扫描(PET成像)的葡萄糖类似物。在麻醉(2%异氟醚)下通过尾静脉向小鼠注射18F-FDG。使用纳米级成像系统(1T,Mediso,Hungary)进行PET成像。在施用融合体之后4小时进行成像。成像后,立即处死小鼠且称重胫骨前肌。使用3D成像系统在全检测器模式下,且启用所有矫正、高正则化和八次迭代来重构PET图像。使用成像软件包(Mediso,Hungary)且应用标准摄取值(SUV)分析来进行重构的图像的三维感兴趣体积(VOI)分析。为胫骨前肌部位绘制固定具有2mm直径的球体的VOI。使用下式计算每个VOI位点的SUV:SUV=(感兴趣体积中的放射性,测量为Bq/cc×体重)/注入的放射性。

在一个实施例中,预期相比于施用PBS或不表达GLUT4的融合体的小鼠,施用表达GLUT4的融合体的小鼠展示VOI中增加的放射性信号。

另外参见Yang等人,《先进材料》29,1605604,2017。

实例57:测量从血管的外渗

此实例描述用体外微流体系统测试的跨内皮单层的融合体外渗的定量(J.S Joen等人2013,journals.plos.org/plosone/article?id=10.1371/journal.pone.0056910)。

细胞从脉管系统外渗至周围组织中。不希望受理论束缚,外渗为融合体到达血管外组织的一种方式。

系统包括三个可独立寻址的介质通道,所述通道由可将ECM模拟凝胶注入其中的腔室分隔。简单来说,微流体系统具有模制的PDMS(聚二甲基硅氧烷;Silgard 184;DowChemical,MI),通过其钻取进入口且结合至盖玻璃以形成微流体通道。通道截面尺寸为1mm(宽度)×120μm(高度)。为了增强基质粘附,PDMS通道用PDL(聚D-赖氨酸氢溴酸盐;1mg/ml;Sigma-Aldrich,St.Louis,MO)溶液涂布。

随后,将I型胶原蛋白(BD Biosciences,San Jose,CA,USA)溶液(2.0mg/ml)伴以磷酸盐缓冲盐水(PBS;Gibco)和NaOH通过四个单独的填充口注入装置的凝胶区域中,且培育30分钟以形成水凝胶。当凝胶聚合时,立即将内皮细胞培养基(获自如Lonza或Sigma的供应商)移至通道中以防止凝胶脱水。吸出培养基后,将稀水凝胶(BD science)溶液(3.0mg/ml)引入至细胞通道中且使用冷培养基将过量的水凝胶溶液洗掉。

将内皮细胞引入至中间通道中且使其沉降以形成内皮。内皮细胞接种后两天,将融合体或巨噬细胞(阳性对照)引入至相同通道中,内皮细胞已在所述通道中形成完整单层。引入融合体以使其粘附且跨单层转移至凝胶区域中。将培养物保持于37℃和5%CO2下的含湿气培育箱中。融合体的GFP表达型式用于使得能够通过荧光显微镜进行活细胞成像。第二天,将细胞固定且在腔室中使用DAPI染色对细胞核染色,且使用共聚焦显微镜对多个所关注区域成像以确定多少融合体穿过了内皮单层。

在一个实施例中,DAPI染色将指示在接种后,融合体和阳性对照细胞能够穿过内皮屏障。

实例58:测量趋化性细胞运动性

此实例描述融合体趋化性的定量。细胞可通过趋化性而朝向或远离化学梯度移动。在一个实施例中,趋化性将使融合体归巢至损伤部位或追踪病原体。如下地分析通过先前实例中所述的任一种方法产生的纯化的融合体组合物的趋化能力。

根据制造商提供的协议在DMEM培养基(ibidi.com/img/cms/products/labware/channel_slides/S_8032X_Chemotaxis/IN_8032X_Chemotaxis.pdf)中,将足够数量的融合体或巨噬细胞(阳性对照)装入显微镜玻片孔中。将融合体在37℃和5%CO2下放置1小时以使其附着。在细胞附着后,将DMEM(阴性对照)或含DMEM的MCP1化学引诱剂装载至中心通道的相邻储集器中,且使用Zeiss倒置宽视野显微镜对融合体连续成像2小时。使用ImageJ软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,http://rsb.info.nih.gov/ij/,1997-2007)分析图像。用手动跟踪插件(Fabrice Cordelières,Institut Curie,Orsay,France)获取每个观察到的融合体或细胞的迁移协调数据。趋化图和迁移速度由趋化和迁移工具(ibidi)确定。

在一个实施例中,融合体的平均累积距离和迁移速度将在阳性对照细胞对趋化因子的反应的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大内。细胞对趋化因子的反应描述于例如Howard E.Gendelman等人,《神经免疫药理学杂志(Journal of Neuroimmune Pharmacology)》,4(1):47-59,2009中。

实例59:测量归巢潜力

此实例描述将融合体归巢至损伤部位。细胞可从远端位点迁移和/或积聚于特定位点,例如归巢至位点。通常,位点为损伤位点。在一个实施例中,融合体将归巢至,例如迁移至或积聚于损伤位点。

通过使用30G针以2μg/mL的浓度肌肉内(IM)注射至右胫骨前肌(TA)中而向8周龄C57BL/6J小鼠(Jackson Laboratories)投配含黑牙蛇毒素(NTX)(Accurate Chemical&Scientific Corp),一种肌肉毒素的无菌生理盐水。通过使用化学脱毛剂对区域脱毛45秒,接着用水冲洗3次而制备胫骨前肌(TA)上的皮肤。选择此浓度以确保肌纤维的最大变性,以及对其卫星细胞、晕倒轴突和血管的最小损伤。

在NTX注射后的第1天,小鼠接受表达萤火虫荧光素酶的融合体或细胞的静脉内注射。通过先前实例所述的任一种方法从稳定表达萤火虫荧光素酶的细胞产生融合体。生物发光成像系统(Perkin Elmer)用于在注射后0、1、3、7、21和28处获得生物发光的整个动物图像。

在成像前五分钟,小鼠接受以150mg/kg剂量腹膜内注射的生物发光底物(PerkinElmer)以使荧光素酶可视化。成像系统被校准以补偿所有装置设置。使用辐射光子(Radiance Photons)测量生物发光信号,且将总通量(Total Flux)用作测量值。通过围绕ROI的信号产生感兴趣区域(ROI),以得到以光子/秒计的值。对用NTX处理的TA肌肉和对侧TA肌肉都评估了ROI,且计算NTX处理的TA肌肉与未用NTX处理的TA肌肉之间的光子/秒的比,作为归巢至NTX处理的肌肉的量度。

在一个实施例中,融合体和细胞中的NTX处理的TA肌肉与未用NTX处理的TA肌肉之间的光子/秒的比将大于1,表明表达荧光素酶的融合体在损伤处的位点特异性积聚。

参见例如Plant等人,《肌肉神经(Muscle Nerve)》34(5)L 577-85,2006。

实例60:测量吞噬活性

此实例表明融合体的吞噬活性。在一个实施例中,融合体具有吞噬活性,例如能够进行吞噬作用。细胞参与吞噬作用,吞噬粒子,使得能够隔离和破坏外来侵入物,如细菌或死细胞。

通过先前实例中所述的任一种方法产生的纯化的融合体组合物包含来自具有部分或完全核灭活的哺乳动物巨噬细胞的融合体,能够进行吞噬作用(通过病原体生物粒子所分析)。根据以下方案,通过使用荧光吞噬作用分析来进行此评估。

将巨噬细胞(阳性对照)和融合体在收获后立即涂铺于单独的共聚焦玻璃底培养皿中。将巨噬细胞和融合体在DMEM+10%FBS+1%P/S中培育1小时以附着。如制造商的协议中所指示地将荧光素标记的大肠杆菌K12和非荧光素标记的大肠杆菌K-12(阴性对照)添加至巨噬细胞/融合体,且培育2小时,tools.thermofisher.com/content/sfs/manuals/mp06694.pdf。在2小时之后,通过添加锥虫蓝将游离的荧光颗粒淬灭。通过共聚焦显微镜在488激发下对由吞噬粒子发出的细胞内荧光成像。使用image J软件对吞噬阳性融合体的数目进行定量。

在引入生物粒子后2小时,吞噬融合体的平均数目为至少30%,且在阳性对照巨噬细胞中为大于30%。

实例61:测量穿过细胞膜或血脑屏障的能力

此实例描述穿过血脑屏障的融合体的定量。在一个实施例中,融合体将穿过(例如进入和离开)血脑屏障,例如以递送至中枢神经系统。

对八周龄C57BL/6J小鼠(Jackson Laboratories)静脉内注射表达萤火虫荧光素酶的融合体或白细胞(阳性对照)。通过先前实例中所述的任一种方法,从稳定表达萤火虫荧光素酶的细胞或不表达荧光素酶的细胞(阴性对照)产生融合体。生物发光成像系统(Perkin Elmer)用于在融合体或细胞注射后1、2、3、4、5、6、8、12和24小时获得生物发光的全动物图像。

在成像前五分钟,小鼠接受以150mg/kg剂量腹膜内注射的生物发光底物(PerkinElmer)以使荧光素酶可视化。成像系统被校准以补偿所有装置设置。测量生物发光信号,且将总通量用作测量值。通过围绕ROI的信号产生感兴趣区域(ROI),以得到以光子/秒计的值。所选的ROI为包括大脑的区域周围的小鼠的头。

在一个实施例中,相比于不表达荧光素酶的阴性对照融合体,注射表达荧光素酶的细胞或融合体的动物中的ROI中的光子/秒将更大,表明表达荧光素酶的融合体积聚于大脑内或周围。

实例62:测量蛋白质分泌的潜力

此实例描述通过融合体的分泌的定量。在一个实施例中,融合体将能够分泌,例如分泌蛋白质。细胞可通过分泌来处置或排出物质。在一个实施例中,融合体将通过分泌在其环境中化学相互作用和通信。

使用来自ThermoFisher Scientific的Gaussia荧光素酶快速分析(目录号16158)确定融合体以给定速率分泌蛋白质的能力。将通过先前实例中所述的任一种方法产生的小鼠胚胎成纤维细胞(阳性对照)或融合体在生长培养基中培育,且通过首先以1600g粒化5分钟且接着收集上清液来每15分钟收集培养基样品。将收集的样品吸移至透明底96孔板中。接着根据制造商的说明书制备分析缓冲液的工作溶液。

简单来说,将考伦特嗪(colenterazine),一种萤光素或发光分子与快速分析缓冲液混合且将混合物吸移至含有样品的96孔板的每个孔中。缺乏细胞或融合体的阴性对照孔包括生长培养基或分析缓冲液以确定背景Gaussia荧光素酶信号。另外,制备纯化的Gaussia荧光素酶(Athena Enzyme Systems,目录号0308)的标准曲线以便每小时将发光信号转化为Gaussia荧光素酶分泌的分子。

使用500毫秒积分来分析板的发光。从所有样品减去背景Gaussia荧光素酶信号且接着计算Gaussia荧光素酶标准曲线的线性最佳拟合曲线。如果样品读数在标准曲线内不拟合,则将其适当稀释且再分析。使用此分析,确定融合体以给定范围内的速率(分子/小时)分泌Gaussia荧光素酶的能力。

在一个实施例中,融合体将能够以阳性对照细胞的1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大的速率分泌蛋白质。

实例63:测量信号转导潜力

此实例描述融合体中的信号转导的定量。在一个实施例中,融合体能够进行信号转导。细胞可通过信号级联(如磷酸化)在称为信号转导的过程中从细胞外环境发送和接收分子信号。通过先前实例中所述的任一种方法产生的纯化的融合体组合物包含来自具有部分或完全核灭活的哺乳动物细胞的融合体,能够进行胰岛素诱导的信号转导。通过测量AKT磷酸化水平,胰岛素受体信号级联中的关键途径和回应于胰岛素的葡萄糖摄取来评估胰岛素诱导的信号转导。

为了测量AKT磷酸化,将细胞,例如小鼠胚胎成纤维细胞(MEF)(阳性对照)和融合体涂铺于48孔板中且在37℃和5%CO2下的含湿气培育箱中放置2小时。在细胞粘附后,将胰岛素(例如10nM)或不含胰岛素的阴性对照溶液添加至含有细胞或融合体的孔中后维持30分钟。在30分钟后,由融合体或细胞制得蛋白质溶解物,且通过蛋白质印迹法测量胰岛素刺激和对照未刺激的样品中的磷酸化AKT水平。

如在葡萄糖摄取部分中所阐述,通过使用标记的葡萄糖(2-NBDG)来测量回应于胰岛素或阴性对照溶液的葡萄糖摄取。(S.Galic等人,《分子细胞生物学(Molecular CellBiology)》25(2):819-829,2005)。

在一个实施例中,相比于阴性对照,融合体将增强AKT磷酸化和回应于胰岛素的葡萄糖摄取至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大。

实例64:测量跨细胞膜转运葡萄糖的能力

此实例描述2-NBDG(2-(N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)氨基)-2-脱氧葡萄糖)的水平的定量,2-NBDG为一种可用于监测活细胞中的葡萄糖摄取,且因此测量跨脂质双层的主动转运的荧光葡萄糖类似物。在一个实施例中,此分析可用于测量葡萄糖摄取的水平和跨融合体的脂质双层的主动转运。

通过先前实例中所述的任一种方法来产生融合体组合物。接着将足够数量的融合体在不含葡萄糖,具有20%胎牛血清和1×青霉素/链霉素的DMEM中在37℃和5%CO2下培育2小时。在2小时葡萄糖饥饿时段之后,改变培养基以使其包括不含葡萄糖的DMEM、20%胎牛血清、1×青霉素/链霉素和20μM2-NBDG(ThermoFisher)且再在37℃和5%CO2下培育2小时。

相同地处理阴性对照融合体,除了添加等量的DMSO来代替2-NBDG。

接着将融合体用1×PBS洗涤三次且再悬浮于适当缓冲液中,且转移至96孔成像板。接着使用GFP光立方体(469/35激发滤光片和525/39发射滤光片)在荧光计中测量2-NBDG荧光,以定量在1小时装载时段内已跨融合体膜转运且累积于融合体中的2-NBDG的量。

在一个实施例中,相比于阴性(DMSO)对照,经2-NBDG处理的融合体中的2-NBDG荧光将更高。用525/39发射滤光片的荧光测量将与存在的2-NBDG分子的数目相关。

实例65:融合体的内腔与水溶液可混溶

此实例评估融合体内腔与水溶液,如水的混溶性。

如先前实例中所述地制备融合体。对照为具有低渗溶液、高渗溶液或正常渗透溶液的透析膜。

将融合体、阳性对照(正常渗透溶液)和阴性对照(低渗溶液)与低渗溶液(150mOsmol)一起培育。在将每个样品暴露于水溶液之后,在显微镜下测量细胞尺寸。在一个实施例中,相比于阴性对照,融合体和阳性对照尺寸在低渗溶液中增加。

将融合体、阳性对照(正常渗透溶液)和阴性对照(高渗溶液)与高渗溶液(400mOsmol)一起培育。在将每个样品暴露于水溶液之后,在显微镜下测量细胞尺寸。在一个实施例中,相比于阴性对照,融合体和阳性对照尺寸在高渗溶液中将减小。

将融合体、阳性对照(低渗或高渗溶液)和阴性对照(正常渗透)与正常渗透溶液(290mOsmol)一起培育。在将每个样品暴露于水溶液之后,在显微镜下测量细胞尺寸。在一个实施例中,相比于阴性对照,正常渗透溶液中的融合体和阳性对照尺寸将保持基本上相同。

实例66:测量细胞溶质中的酯酶活性

此实例描述融合体中的酯酶活性的定量,作为代谢活性的替代。通过钙黄绿素-AM染色的定量评估来确定融合体中的胞质酯酶活性(Bratosin等人,《细胞测量术(Cytometry)》66(1):78-84,2005)。

膜渗透性染料钙黄绿素-AM(Molecular Probes,Eugene OR USA)制备为10mM的二甲亚砜储备溶液和100mM的PBS缓冲液,pH 7.4的工作溶液。将通过先前实例中所述的任一种方法产生的融合体或阳性对照亲本小鼠胚胎成纤维细胞悬浮于PBS缓冲液中,且与钙黄绿素-AM工作溶液(钙黄绿素-AM中的最终浓度:5mM)一起在37℃下在黑暗中培育30分钟,且接着在PBS缓冲液中稀释以立即进行钙黄绿素荧光保留的流式细胞分析。

如(Jacob等人,《细胞测量术》12(6):550-558,1991)中所述,用皂苷将融合体和对照亲本小鼠胚胎成纤维细胞实验性透化为零酯酶活性的阴性对照。将融合体和细胞在含有0.05%叠氮化钠的1%皂苷于PBS缓冲液,pH 7.4中的溶液中培育15分钟。由于质膜透化的可逆性质,在用于另外的染色和洗涤步骤的所有缓冲液中均包括皂苷。在皂苷透化后,将融合体和细胞悬浮于含有0.1%皂苷和0.05%叠氮化钠PBS缓冲液中且与钙黄绿素-AM一起培育(37C在黑暗中持续45分钟)至5mM的最终浓度,用相同的含有0.1%皂苷和0.05%叠氮化钠的PBS缓冲液洗涤三次,且通过流式细胞测量术进行分析。在FACS细胞仪(BectonDickinson,San Jose,CA,USA)上进行流动式细胞测量术分析,在530+/-30nm处收集488nm氩气激光激发和发射。FACS软件用于采集和分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。基于每个样品中的钙黄绿素-AM的强度计算相对酯酶活性。在正向和侧向散射通道中捕获所有事件(或者,可应用门来仅选择融合体群体)。通过减去对应的阴性对照皂苷处理的样品的荧光强度(FI)值来确定融合体的FI值。将融合体样品的标准化酯酶活性相对于对应的阳性对照细胞样品进行标准化,以产生胞质酯酶活性的定量测量值。

在一个实施例中,相比于阳性对照细胞,融合体制剂将具有在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大内的酯酶活性。

另外参见Bratosin D,Mitrofan L,Palii C,Estaquier J,Montreuil J.使用钙黄绿素-AM的新型荧光分析,用于测定人类红细胞活力和衰老(Novel fluorescence assayusing calcein-AM for the determination of human erythrocyte viability andaging.)《细胞测量术A辑(Cytometry A.)》2005年7月;66(1):78-84;和Jacob BC,Favre M,Bensa JC.用皂苷的膜细胞透化和通过流式细胞测量术的多参数分析(Membrane cellpermeabilisation with saponin and multiparametric analysis by flowcytometry.)《细胞测量术》1991;12:550-558。

实例67:测量融合体中的乙酰胆碱酯酶活性

使用遵循先前描述的程序(Ellman等人,《生化药理学(Biochem.Pharmacol.)》7,88,1961)的试剂盒(MAK119,SIGMA)且根据制造商的建议测量乙酰胆碱酯酶活性。

简单来说,将融合体悬浮于含1.25mM乙酰硫代胆碱的PBS,pH 8中,与含0.1mM 5,5-二硫基-双(2-硝基苯甲酸)的PBS,pH 7混合。在室温下进行培育,但在开始光学密度读取之前,将融合体和底物溶液在37℃下预温热10分钟。

用板读取器分光光度计(ELX808,BIO-TEK instruments,Winooski,VT,USA)在450nm处监测吸收变化10分钟。单独地,样品用于通过二喹啉甲酸分析来确定融合体的蛋白质含量以进行标准化。使用此分析,融合体被确定为具有<100AChE活性单位/μg蛋白质。

在一个实施例中,AChE活性单位/μg蛋白质值将小于0.001、0.01、0.1、1、10、100或1000。

实例68:测量代谢活性水平

此实例描述融合体中的柠檬酸合酶活性的测量的定量。

柠檬酸合酶为三羧酸(TCA)循环内的一种酶,其催化草酰乙酸(OAA)与乙酰辅酶A之间的反应以产生柠檬酸盐。在乙酰辅酶A水解后,会释放具有硫醇基的辅酶A(CoA-SH)。硫醇基与化学试剂5,5-二硫基双-(2-硝基苯甲酸)(DTNB)反应,以形成5-硫基-2-硝基苯甲酸(TNB),其为可以分光光度法在412nm处测量的黄色产物(Green 2008)。市售的试剂盒,如Abcam人类柠檬酸合酶活性分析试剂盒(产品编号ab119692)提供了执行此测量所需的所有试剂。

根据制造商的建议进行分析。如下制备融合体样品溶解物:收集通过先前实例中所述的任一种方法产生的融合体且将其在提取缓冲液(Abcam)中在冰上溶解20分钟。在离心之后收集上清液,且通过二喹啉甲酸分析(BCA,ThermoFisher Scientific)评估蛋白质含量,且将制剂保持于冰上直至引发以下定量方案。

简单来说,将融合体溶解物样品在提供的微量培养板孔中的1×培育缓冲液(Abcam)中稀释,其中一组孔仅接受1×培育缓冲液。将板密封且在室温下在振荡下以300rpm培育4小时。接着从孔中吸出缓冲液且添加1×洗涤缓冲液。再次重复此洗涤步骤。接着将1×活性溶液添加至每个孔,且通过每20秒测量412nm处的吸光度持续30分钟,且在读取之间振荡而在微孔板读取器上分析板。

从所有孔减去背景值(仅具有1×培育缓冲液的孔),且将柠檬酸合酶活性表示为每微克装载的融合体溶解物样品每分钟吸光度的变化(Δ[email protected]/min/μg蛋白质)。仅使用动力学测量的100-400秒的线性部分来计算活性。

在一个实施例中,相比于对照细胞,融合体制剂将具有在1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大内的合酶活性。

参见例如Green HJ等人在运动和恢复的连续三天内,人体肌肉中的代谢、酶和转运体反应(Metabolic,enzymatic,and transporter response in human muscle duringthree consecutive days of exercise and recovery.)《美国生理调节、综合和比较生理学杂志(Am J Physiol Regul Integr Comp Physiol)》295:R1238-R1250,2008。

实例69:测量呼吸水平

此实例描述融合体中的呼吸水平的测量的定量。细胞中的呼吸水平可为氧消耗的量度,氧消耗促进代谢。通过Seahorse细胞外通量分析仪(Agilent)测量融合体呼吸的耗氧率(Zhang 2012)。

将通过先前实例中所述的任一种方法产生的融合体或细胞接种于96孔Seahorse微孔板(Agilent)中。将微孔板短暂离心以将孔底部的融合体和细胞制成集结粒。如下起始耗氧量分析:通过去除生长培养基,用含有25mM葡萄糖和2mM谷氨酰氨(Agilent)的低缓冲DMEM基本培养基代替且在37℃下培育微孔板60分钟以使温度和pH平衡。

接着在细胞外通量分析仪(Agilent)中分析微孔板,所述分析仪测量紧贴在粘附融合体和细胞周围的培养基中的细胞外氧和pH的变化。在获得稳态耗氧量(基础呼吸速率)和细胞外酸化速率后,将抑制ATP合酶的寡霉素(5μM)和将线粒体解偶联的质子离子载体FCCP(羰基氰化物4-(三氟甲氧基)苯腙;2μM)添加至微孔板的每个孔,以获得最大耗氧率的值。

最后,添加5μM抗霉素A(线粒体复合物III的抑制剂)以确认呼吸变化主要是由于线粒体呼吸。从所有耗氧量测量值中减去添加抗霉素A后的最低耗氧率,以去非除线粒体呼吸组分。分析中不包括对寡霉素(耗氧率相比于基础至少降低25%)或FCCP(耗氧率相比于基础至少增加50%)的反应不恰当的细胞样品。接着将融合体呼吸水平测量为pmol O2/min/1e4融合体。

接着将此呼吸水平标准化为对应的细胞呼吸水平。在一个实施例中,相比于对应的细胞样品,融合体将具有至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大的呼吸水平。

参见例如Zhang J,Nuebel E,Wisidagama DRR等人测量培养的细胞,包括人类多能干细胞和分化细胞中的能量代谢(Measuring energy metabolism in cultured cells,including human pluripotent stem cells and differentiated cells.)《自然综述(Nature protocols.)。2012;7(6):10.1038/nprot.2012.048.doi:10.1038/nprot.2012.048。

实例70:测量融合体的磷脂酰丝氨酸水平

此实例描述膜联蛋白-V结合至融合体表面的水平的定量。

染色细胞可在细胞表面上显示磷脂酰丝氨酸,其为程序性细胞死亡途径中细胞凋亡的标记。膜联蛋白-V结合至磷脂酰丝氨酸,且因此,膜联蛋白-V结合为细胞活力的代理。

如本文所述地产生融合体。为了检测凋亡信号,用5%膜联蛋白V荧光剂594(A13203,Thermo Fisher,Waltham,MA)对融合体或阳性对照细胞染色。每组(详述于下表中)包括用凋亡诱导剂甲萘醌处理的实验组。将甲萘醌以100μM甲萘醌添加4小时。所有样品在流式细胞仪(Thermo Fisher,Waltham,MA)上运行,且用YL1激光在561nm的波长和585/16nm的发射滤光片测量荧光强度。通过比较所有组中的膜联蛋白V的荧光强度来定量细胞外磷脂酰丝氨酸的存在。

阴性对照未染色的融合体对膜联蛋白V染色不呈阳性。

在一个实施例中,融合体能够回应于甲萘醌上调细胞表面上的磷脂酰丝氨酸显示,表明非甲萘醌刺激的融合体未经历凋亡。在一个实施例中,用甲萘醌刺激的阳性对照细胞展示比未用甲萘醌刺激的融合体更高水平的膜联蛋白V染色。

表10:膜联蛋白V染色参数

实验组 膜联蛋白V信号的平均荧光强度(和标准差)
未染色的融合体(阴性对照) 941(937)
染色的融合体 11257(15826)
染色的融合体+甲萘醌 18733(17146)
染色的巨噬细胞+甲萘醌(阳性对照) 14301(18142)

实例71:测量近分泌信号传导水平

此实例描述融合体中的近分泌信号传导的定量。

细胞可通过近分泌信号传导形成细胞接触依赖性信号传导。在一个实施例中,融合体中近分泌信号传导的存在将证明融合体可刺激、抑制与其紧邻的细胞且与所述细胞通信。

通过先前实例中所述的任一种方法从具有部分或完全核灭活的哺乳动物骨髓基质细胞(BMSC)产生的融合体通过巨噬细胞中的近分泌信号传导触发IL-6分泌。将初级巨噬细胞与BMSC共培养。首先将骨髓源性巨噬细胞接种至6孔板中,且培育24小时,接着将初级小鼠BMS源性融合体或BMSC细胞(阳性对照亲本细胞)置于具有10%FBS的DMEM培养基中的巨噬细胞上。在不同时间点(2、4、6、24小时)收集上清液且通过ELISA分析分析IL-6分泌。(Chang J.等人,2015)。

在一个实施例中,通过增加培养基中的巨噬细胞分泌的IL-6水平来测量由BMSC融合体诱导的近分泌信号传导的水平。在一个实施例中,近分泌信号传导的水平将为由阳性对照骨髓基质细胞(BMSC)诱导的水平的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大。

实例72:测量旁分泌信号传导水平

此实例描述融合体中的旁分泌信号传导的定量。

细胞可通过旁分泌信号传导与局部微环境中的其它细胞通信。在一个实施例中,融合体将能够旁进行分泌信号传导,例如以与其局部环境中的细胞通信。在一个实施例中,融合体通过以下方案经由旁分泌衍生的分泌在内皮细胞中触发Ca2+信号传导的能力将通过钙指示剂fluo-4AM来测量Ca2+信号传导。

为了制备实验板,将鼠类肺微血管内皮细胞(MPMVEC)涂铺于0.2%明胶涂布的25mm玻璃底共聚焦培养皿上(80%汇合)。将MPMVEC在室温下在含有2%BSA和0.003%普朗尼克酸(pluronic acid)的ECM中培育30分钟,最终浓度为5μM fluo-4AM(Invitrogen),以允许装载fluo-4AM。在装载之后,将MPMVEC用含有苯磺唑酮的成像溶液(含有0.25%BSA的ECM)洗涤,以使染料损失降至最低。在装载fluo-4之后,将500μl预温热的实验成像溶液添加至板,且通过Zeiss共聚焦成像系统对板进行成像。

在单独的试管中,将新鲜分离的鼠类巨噬细胞在培养基(DMEM+10%FBS)中用1μg/ml LPS处理或不用LPS处理(阴性对照)。在刺激后,通过先前实例中所述的任一种方法从巨噬细胞产生融合体。

接着在含有2%BSA和0.003%普朗尼克酸的ECM中用cell tracker red CMTPX(Invitrogen)标记融合体或亲本巨噬细胞(阳性对照)。接着将融合体和巨噬细胞洗涤且再悬浮于实验成像溶液中。将标记的融合体和巨噬细胞添加至共聚焦板中装有fluo-4AM的MPMVEC上。

使用具有氩离子激光源的Zeiss共聚焦成像系统每3秒记录一次绿色和红色荧光信号,持续10-20分钟,其中分别针对fluo-4AM和cell tracker red荧光在488和561nm激发。使用成像软件分析Fluo-4荧光强度变化(Mallilankaraman,K.等人,《可视化实验杂志(J Vis Exp.)》(58):3511,2011)。从LPS刺激的融合体和细胞组中减去阴性对照融合体和细胞组中测量的Fluo-4强度水平。

在一个实施例中,相比于阳性对照细胞组,融合体,例如活化的融合体将诱导至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大的Fluo-4荧光强度增加。

实例73:针对运动性测量使肌动蛋白聚合的能力

此实例描述融合体中的细胞骨架组分(如肌动蛋白)的定量。在一个实施例中,融合体包含如肌动蛋白的细胞骨架组分,且能够进行肌动蛋白聚合。

细胞将肌动蛋白(其为细胞骨架组分)用于运动性和其它细胞质过程。细胞骨架对于产生运动驱动力和协调运动过程至关重要

如本文所述地使C2C12细胞去核。将获自12.5%和15%Ficoll层的融合体合并且标记为‘轻’,同时将来自16-17%层的融合体合并且标记为‘中等’。将融合体或细胞(亲本C2C12细胞,阳性对照)再悬浮于DMEM+Glutamax+10%胎牛血清(FBS)中,涂铺于24孔超低附着板(#3473,Corning Inc,Corning,NY)中且在37℃+5%CO2下培育。定期(5.25小时、8.75小时、26.5小时)获取样品且用165μM若丹明鬼笔环肽染色(阴性对照不染色),且在流式细胞仪(#A24858,Thermo Fisher,Waltham,MA)上用FC激光YL1(561nm,具有585/16滤光片)测量以测量F-肌动蛋白细胞骨架含量。测量融合体以及未染色的融合体和染色的亲本C2C12细胞中若丹明鬼笔环肽的荧光强度。

融合体荧光强度在所有时间点均大于阴性对照(图4),且融合体能够以与亲本C2C12细胞类似的速率聚合肌动蛋白。

通过市售的ELISA系统(Cell Signaling Technology and MyBioSource),根据制造商的说明书测量其它细胞骨架组分,如下表中所列的那些。

表11:细胞骨架组分

Figure BDA0002356542560001981

接着将100μL适当稀释的溶解物从微孔板条添加至适当的孔中。将微孔用胶带密封且在37C下培育2小时。在培育之后,去除密封胶带且丢弃内含物。每个微孔用200μL的1×洗涤缓冲液洗涤四次。在每次单独洗涤之后,将板在吸水布上敲打,以便从每个孔中去除残留的洗涤溶液。但是,孔在实验期间的任何时候都不是完全干燥的。

随后,将100μl复原的检测抗体(绿色)添加至每个单独的孔中,阴性对照孔除外。接着将孔密封且在37℃下培育1小时。在培育完成之后重复洗涤程序。将100μL复原的HRP连接的二级抗体(红色)添加至每个孔中。将孔用胶带密封且在37℃下培育30分钟。接着去除密封胶带且重复洗涤程序。接着将100μL TMB底物添加至每个孔中。将孔用胶带密封,接着在37℃下培育10分钟。一旦最终培育完成,将100μL终止溶液添加至每个孔中且将板轻轻摇动几秒。

在添加终止溶液的30分钟内进行所述分析的分光光度法分析。用无绒组织擦拭孔的底面且接着在450nm处读取吸光度。在一个实施例中,已用检测抗体染色的融合体样品将在450nm处吸收比阴性对照融合体样品更多的光,且比已用检测抗体染色的细胞样品吸收更少的光。

实例74:测量平均膜电位

此实例描述融合体的线粒体膜电位的定量。在一个实施例中,包含线粒体膜的融合体将维持线粒体膜电位。

线粒体代谢活性可通过线粒体膜电位来测量。使用市售的染料TMRE定量融合体制剂的膜电位,以评估线粒体膜电位(TMRE:四甲基若丹明,乙酯,过氯酸盐,Abcam,目录号T669)。

通过先前实例中所述的任一种方法来产生融合体。在生长培养基(具有10%胎牛血清的无酚红DMEM)中以6等份(未处理和FCCP处理的一式三份)稀释融合体或亲本细胞。将样品的一个等分试样与FCCP一起培育,FCCP是消除线粒体膜电位且防止TMRE染色的解偶联剂。对于FCCP处理的样品,将2μM FCCP添加至样品且在分析之前培育5分钟。接着用30nMTMRE对融合体和亲本细胞进行染色。对于每个样品,还并行地制备未染色的(无TMRE)样品。将样品在37℃下培育30分钟。接着将样品在具有488nm氩激光的流式细胞仪上分析,且在530+/-30nm处收集激发和发射。

基于TMRE的强度计算膜电位值(以毫伏,mV计)。在正向和侧向散射通道中捕获所有事件(或者,可应用门来排除小碎屑)。通过从未处理和FCCP处理的样品的几何平均值减去未染色的样品的荧光强度的几何平均值来将未处理和FCCP处理的样品的荧光强度(FI)值标准化。使用标准化荧光强度值用修正的能斯特方程式(Nernst equation)(参见下文)来计算每种制剂的膜电位状态,所述方程式可用于基于TMRE荧光来确定融合体或细胞的线粒体膜电位(因为TMRE以能斯特方式在线粒体中积聚)。

用下式计算融合体或细胞膜电位:(mV)=-61.5*log(FI未处理-标准化/FIFCCP处理-标准化)。在一个实施例中,对来自C2C12小鼠成肌细胞的融合体制剂使用此分析,融合体制剂的膜电位状态将在亲本细胞的约1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大内。在一个实施例中,膜电位的范围为约-20至-150mV。

实例75:测量个体中的持久性半衰期

此实例描述融合体半衰期的测量。

融合体衍生自表达Gaussia荧光素酶的细胞,通过先前实例中所述的任一种方法产生,且在缓冲溶液中制备纯、1:2、1:5和1:10稀释液。将缺少融合体的缓冲溶液用作阴性对照。

将每个剂量静脉内施用至三只八周龄雄性C57BL/6J小鼠(JacksonLaboratories)。在静脉内施用融合体后1、2、3、4、5、6、12、24、48和72小时从眶后静脉收集血液。在实验结束时通过CO2吸入将动物处死。

将血液在室温下离心20分钟。立即将血清样品冷冻于-80℃下直至生物分析。接着,在将样品与Gaussia荧光素酶底物(Nanolight,Pinetop,AZ)混合后,将每个血液样品用于进行Gaussia荧光素酶活性分析。简单来说,将考伦特嗪,一种荧光素或发光分子与快速分析缓冲液混合且将混合物吸移至含有血液样品的96孔板的孔中。缺少血液的阴性对照孔含有分析缓冲液以确定背景Gaussia荧光素酶信号。

另外,制备阳性对照纯化的Gaussia荧光素酶(Athena Enzyme Systems,目录号0308)的标准曲线以便每小时将发光信号转化为Gaussia荧光素酶分泌的分子。使用500毫秒积分来分析板的发光。从所有样品减去背景Gaussia荧光素酶信号且接着计算Gaussia荧光素酶标准曲线的线性最佳拟合曲线。如果样品读数在标准曲线内不拟合,则将其适当稀释且再分析。将来自1、2、3、4、5、6、12、24、48和72小时处获取的样品的荧光素酶信号内插至标准曲线。使用一室模型的以下方程式计算消除速率常数ke(h-1):C(t)=C0×e-kext,其中C(t)(ng/mL)为时间t(h)处的融合体浓度且C0为在时间=0时的融合体浓度(ng/mL)。将消除半衰期t1/2,e(h)计算为ln(2)/ke

在一个实施例中,融合体的半衰期将为阴性对照细胞的至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%或更大。

实例76:测量融合体在循环中的保留

此实例描述将融合体递送至循环中和在器官中的保留的定量。在一个实施例中,将融合体递送至循环中,且不被捕获和保留在器官部位中。

在一个实施例中,递送至外周循环中的融合体逃避了网状内皮系统(RES)的捕获和保留,以便高效地到达靶位点。RES包含细胞系统,主要是巨噬细胞,其驻留在例如脾脏、***和肝脏的实体器官中。这些细胞通常负责去除“老”细胞,如红细胞。

融合体衍生自表达CRE重组酶的细胞(药剂),或不表达CRE的细胞(阴性对照)。如同实例62中,制备这些融合体用于体内注射。

受体小鼠带有一个被CRE蛋白修饰的loxp-荧光素酶基因组DNA基因座,所述蛋白由通过融合体递送的mRNA制成,以开启荧光素酶的表达(JAX#005125)。可通过生物发光成像在活体动物中检测到荧光素酶。用于此实例的阳性对照是与小鼠品系配对的受体小鼠的后代,所述品系仅在巨噬细胞和单核细胞中表达来自其自身基因组的相同蛋白质(Cx3cr1-CRE JAX#025524)。来自此配对的后代带有每个等位基因之一(loxp-荧光素酶,Cx3cr1-CRE)。

通过尾静脉注射(IV,实例#48)将融合体注射至小鼠的外周循环中,所述小鼠带有基因座,其在受到CRE蛋白作用时引起荧光素酶的表达。RES的非特异性捕获机制在本质上为吞噬的,将一定比例的CRE蛋白从融合体释放至巨噬细胞中,从而引起基因组重组。IVIS测量(如实例62中所述)鉴别非融合剂对照在何处积聚和融合。脾脏、***和肝脏中的积聚将指示非特异性RES介导的融合体捕获。在融合体注射后24、48和96小时处进行IVIS。

将小鼠安乐死且收集脾脏、肝脏和肠道中的主要淋巴链。

将基因组DNA从这些器官分离且进行针对重组的基因组DNA残余物的定量聚合酶链反应。还对替代基因组位点(不被CRE靶向)进行定量,以提供样品中的细胞数目的量度。

在实施例中,将在整个动物中且特别是在肝脏和脾脏部位,对于药剂和阴性对照二者观察到低生物发光信号。在实施例中,阳性对照将显示肝脏中增加的信号(相比于阴性对照和药剂)和脾脏中的高信号以及与***一致的分布。

在一个实施例中,这些组织的基因组PCR定量将指示在所有检查的组织中,阳性对照中的替代基因座上的高重组信号比例,而对于药剂和阴性对照,重组水平在所有组织中都将可忽略不计。

在一个实施例中,此实例的结果将指示非融合剂对照不被RES保留,且将能够实现广泛分布且展现高生物可用性。

实例77:在免疫抑制下的融合体寿命

此实例描述当融合体组合物与免疫抑制药物共同施用时,融合体组合物的免疫原性的定量。

刺激免疫反应的疗法有时会降低治疗功效或对受体产生毒性。在一个实施例中,融合体将为基本上非免疫原性的。

将通过先前实例中所述的任一种方法产生的融合体的纯化组合物与免疫抑制药物共同施用,且通过融合体的体内寿命来分析免疫原性特性。将足够数量的荧光素酶标记的融合体连同他克莫司(TAC,4毫克/千克/天;Sigma Aldrich),或媒剂(阴性对照)或无任何其它药剂(阳性对照)局部注射至正常小鼠的腓肠肌中。接着在注射后1、2、3、4、5、6、12、24、48和72小时处对小鼠进行体内成像。

简单来说,将小鼠用异氟醚麻醉且以每千克体重375mg的剂量腹膜内施用D-荧光素。在成像时,将动物置于不透光的室内,且取决于生物发光的发射强度,以5秒至5分钟的积分时间收集从移植到动物体内的表达荧光素酶的融合体发射的光子。在上述的各个时间点重复扫描相同小鼠。BLI信号以光子/秒(总通量)为单位定量且呈现为log[光子/秒]。通过比较使用或不使用TAC的强度和融合体注射来分析数据。

在实施例中,在最终时间点,分析将显示TAC共同施用组中的融合体寿命相对于单独的融合体和媒剂组增加。除了融合体寿命增加以外,在一些实施例中,将观察到在每个时间点,来自融合体加TAC组的BLI信号相对于融合体加媒剂或单独的融合体增加。

实例78:测量对融合体具有反应性的预先存在的IgG和IgM抗体

此实例描述使用流式细胞测量术测量的预先存在的抗融合体抗体滴度的定量。

融合体的免疫原性的一个量度是抗体反应。识别融合体的抗体可以能够限制融合体活性或寿命的方式结合。在一个实施例中,本文所述的融合体的一些受体将具有结合且识别融合体的预先存在的抗体。

在此实例中,使用融合体测试抗融合体抗体滴度,所述融合体使用异种源细胞通过先前实例中所述的任一种方法产生。在此实例中,对未用融合体治疗的小鼠评估抗融合体抗体的存在。值得注意的是,通过对方案进行优化,本文所述的方法可同样适用于人类、大鼠、猴。

阴性对照为已耗尽IgM和IgG的小鼠血清,且阳性对照为衍生自小鼠的血清,所述小鼠已接受产生自异种源细胞的融合体的多次注射。

为了评估结合至融合体的预先存在的抗体的存在,来自未用融合体治疗的小鼠的血清首先通过加热至56℃后维持30分钟而去补体,且随后在含有3%FCS和0.1%NaN3的PBS中稀释33%。将等量的血清和融合体(1×102-1×108个融合体/毫升)悬浮液在4℃下培育30分钟且经小牛血清缓冲用PBS洗涤。

通过将细胞与特异性针对小鼠IgM(BD Bioscience)的Fc部分的PE缀合的山羊抗体一起在4℃下培育45分钟而对IgM异种反应抗体染色。值得注意的是,也可使用抗小鼠IgG1或IgG2二级抗体。将来自所有组的细胞用含有2%FCS的PBS洗涤两次且接着在FACS系统(BD Biosciences)上进行分析。通过使用对数扩增来收集荧光数据且表示为平均荧光强度。

在一个实施例中,阴性对照血清将显示与无血清或单独的次级对照类似的可忽略的荧光。在一个实施例中,阳性对照将显示比阴性对照更多的荧光,且比无血清或单独的次级对照更多。在一个实施例中,在发生免疫原性的情况下,来自未用融合体治疗的小鼠的血清将显示比阴性对照更多的荧光。在一个实施例中,在不发生免疫原性的情况下,来自未用融合体治疗的小鼠的血清将显示与阴性对照相比类似的荧光。

实例79:在多次施用融合体后测量IgG和IgM抗体反应

此实例描述在多次施用修饰的融合体后,修饰的融合体的体液反应的定量。在一个实施例中,修饰的融合体(例如通过本文所述的方法修饰)将在多次(例如超过一次,例如2次或更多次)施用修饰的融合体后具有降低的(例如相比于施用未修饰的融合体降低的)体液反应。

融合体的免疫原性的一个量度是抗体反应。在一个实施例中,重复注射融合体可使得产生抗融合体抗体,例如识别融合体的抗体。在一个实施例中,识别融合体的抗体可以能够限制融合体活性或寿命的方式结合。

在此实例中,在一次或多次施用融合体后检查抗融合体抗体滴度。通过先前实例中的任一个产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC)、经慢病毒介导的HLA-G表达修饰的间充质干细胞(下文称为MSC-HLA-G)和经慢病毒介导的空载体表达修饰的间充质干细胞(下文称为MSC-空载体)。血清取自不同的群体:全身和/或局部注射1、2、3、5、10次媒剂(未用融合体治疗的组)、MSC融合体、MSC-HLA-G融合体或MSC-空载体融合体注射液的小鼠。

为了评估抗融合体抗体的存在和丰度,来自小鼠的血清首先通过加热至56℃后维持30分钟去补体且随后在具有3%FCS和0.1%NaN3的PBS中稀释33%。将等量的血清和融合体(1×102-1×108个融合体/毫升)在4℃下培育30分钟且经小牛血清缓冲用PBS洗涤。

通过将细胞与特异性针对小鼠IgM(BD Bioscience)的Fc部分的PE缀合的山羊抗体一起在4℃下培育45分钟而对融合体反应性IgM抗体染色。值得注意的是,也可使用抗小鼠IgG1或IgG2二级抗体。将来自所有组的细胞用含有2%FCS的PBS洗涤两次且接着在FACS系统(BD Biosciences)上进行分析。通过使用对数扩增来收集荧光数据且表示为平均荧光强度。

在一个实施例中,相比于MSC融合体或MSC-空载体融合体,MSC-HLA-G融合体将在注射后具有降低的抗融合体IgM(或IgG1/2)抗体滴度(如根据FACS上的荧光强度所测量)。

实例80:修饰融合体源细胞以表达耐受蛋白以降低免疫原性

此实例描述衍生自修饰的细胞来源的融合体中的免疫原性的定量。在一个实施例中,与衍生自未修饰的细胞来源的融合体相比,衍生自修饰的细胞来源的融合体具有降低的免疫原性。

刺激免疫反应的疗法有时会降低治疗功效或对受体产生毒性。在一个实施例中,向个体施用基本上非免疫原性的融合体。在一个实施例中,可分析细胞来源的免疫原性作为融合体免疫原性的代替。

使用慢病毒介导的HLA-G表达或空载体(阴性对照)表达修饰的iPS细胞的免疫原性特性分析如下。将足够数量的iPS细胞作为潜在的融合体细胞来源在后侧腹皮下注射至C57/B6小鼠中,且给予适当量的时间以允许畸胎瘤形成。

一旦形成畸胎瘤便收集组织。将准备用于荧光染色的组织在OCT中冷冻,且将准备用于免疫组织化学和H&E染色的组织固定于10%缓冲***中且包埋于石蜡中。根据一般免疫组织化学方案,将组织切片用抗体多克隆兔抗人类CD3抗体(DAKO)、小鼠抗人类CD4mAb(RPA-T4,BD PharMingen)、小鼠抗人类CD8 mAb(RPA-T8,BD PharMingen)染色。通过使用适当的检测试剂,即抗小鼠次级HRP(Thermofisher)或抗兔次级HRP(Thermofisher)检测这些抗体。

使用基于过氧化物酶的可视化系统(Agilent)实现检测。通过对使用光学显微镜以20×视野检查的25、50或100个组织切片中存在的浸润CD4+T细胞、CD8+T细胞CD3+NK细胞取平均值来分析数据。在一个实施例中,与表达HLA-G的iPSC相比,未修饰的iPSC或表达空载体的iPSC将在检查的视野中存在更高数目的浸润CD4+T细胞、CD8+T细胞、CD3+NK细胞。

在一个实施例中,融合体的免疫原性特性将基本上等同于源细胞。在一个实施例中,相对于未修饰的对应物,衍生自用HLA-G修饰的iPS细胞的融合体将具有降低的免疫细胞浸润。

实例81:修饰融合体源细胞以敲落免疫原性蛋白质以降低免疫原性

此实例描述衍生自细胞来源的融合体组合物的产生的定量,所述融合体组合物已被修饰以降低具有免疫原性的分子的表达。在一个实施例中,融合体可衍生自细胞来源,所述融合体已被修饰以降低具有免疫原性的分子的表达。

刺激免疫反应的疗法会降低治疗功效或对受体产生毒性。因此,免疫原性对于安全和有效的治疗融合体是重要特性。某些免疫活化剂的表达可产生免疫反应。MHC I类代表免疫活化剂的一个实例。

在此实例中,通过先前实例中所述的任一种方法产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC,阳性对照)、经慢病毒介导的靶向shRNA的MHC I类的表达修饰的间充质干细胞(下文称为MSC-shMHC I类)和经慢病毒介导的非靶向加扰shRNA的表达修饰的间充质干细胞(下文称为MSC加扰,阴性对照)。

使用流式细胞测量术对融合体分析MHC I类的表达。将适当数目的融合体洗涤且再悬浮于PBS中,与针对MHC I类的荧光结合的单克隆抗体(Harlan Sera-Lab,Belton,UK)的1:10-1:4000稀释液一起保持于冰上30分钟。将融合体在PBS中洗涤三次且再悬浮于PBS中。使用与等稀释的同型对照抗体一起培育且适当荧光结合的融合体制剂的相等的等分试样来确定非特异性荧光。在流式细胞仪(FACSort,Becton-Dickinson)中分析融合体且用流程分析软件(Becton-Dickinson)来分析数据。

比较衍生自MSC、MSC-shMHC I类、MSC-加扰的融合体的平均荧光数据。在一个实施例中,相比于MSC和MSC-加扰,衍生自MSC-shMHC I类的融合体将具有较低的MHC I类表达。

实例82:修饰融合体源细胞以逃避巨噬细胞吞噬作用

此实例描述通过修饰的融合体逃避吞噬作用的定量。在一个实施例中,修饰的融合体将通过巨噬细胞逃避吞噬作用。

细胞参与吞噬作用,吞噬粒子,使得能够隔离和破坏外来侵入物,如细菌或死细胞。在一些实施例中,融合体被巨噬细胞吞噬将降低融合体的活性。

通过前述实例中所述的任一种方法来产生融合体。融合体由以下产生:缺少CD47的CSFE标记的哺乳动物细胞(下文称为NMC,阳性对照)、使用慢病毒介导的CD47 cDNA的表达工程化以表达CD47的CSFE标记的细胞(下文称为NMC-CD47)和使用慢病毒介导的空载体对照的表达工程化的CSFE标记的细胞(下文称为NMC-空载体,阴性对照)。

根据以下方案通过吞噬作用分析来确定巨噬细胞介导的免疫清除的降低。将巨噬细胞在收获后立即涂铺于共聚焦玻璃底培养皿中。将巨噬细胞在DMEM+10%FBS+1%P/S中培育1小时以附着。如方案中所指示地将适当数目的衍生自NMC、NMC-CD47、NMC-空载体的融合体添加至巨噬细胞,且培育2小时,tools.thermofisher.com/content/sfs/manuals/mp06694.pdf。

2小时后,将培养皿温和地洗涤且检查细胞内荧光。通过共聚焦显微镜在488激发下对由吞噬粒子发出的细胞内荧光成像。使用成像软件对吞噬阳性巨噬细胞的数目进行定量。数据被表示为吞噬指数=(吞噬细胞的总数/计数的巨噬细胞的总数)×(含有吞噬细胞的巨噬细胞的数目/计数的巨噬细胞的总数)×100。

在一个实施例中,相对于衍生自NMC或NMC-空载体的融合体,当巨噬细胞与衍生自NMC-CD47的融合体一起培育时,吞噬指数将减小。

实例83:修饰融合体源细胞以降低由PBMC细胞溶解介导的细胞毒性

此实例描述衍生自细胞的融合体的产生,所述细胞被修饰以具有降低的归因于PBMC细胞溶解的细胞毒性。

在一个实施例中,细胞毒性介导的PBMC对源细胞或融合体的细胞溶解是融合体的免疫原性的量度,因为溶解将降低(例如抑制或终止)融合体的活性。

在此实例中,通过先前实例中所述的任一种方法产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC,阳性对照)、经慢病毒介导的HLA-G表达修饰的间充质干细胞(下文称为MSC-HLA-G)和经慢病毒介导的空载体表达修饰的间充质干细胞(下文称为MSC-空载体,阴性对照)。

PMBC介导的融合体溶解是通过如Bouma等人《人类免疫学(Hum.Immunol.)》35(2):85-92;1992和van Besouw等人《移植》70(1):136-143;2000中所述的铕释放分析确定的。将PBMC(下文称为效应细胞)从适当供体分离,且在37C下在圆底96孔板中用同种异体γ照射的PMBC和200IU/mL IL-2(proleukin,Chiron BV Amsterdam,The Netherlands)刺激7天。将融合体用铕-二亚乙基三胺五乙酸盐(DTPA)(sigma,St.Louis,MO,USA)标记。

在第7天,通过在涂铺之后,以1000:1-1:1与1:1.25-1:1000范围内的效应细胞/靶细胞比将63Eu标记的融合体与效应细胞一起在96孔板中培育1、2、3、4、5、6、8、10、15、20、24、48小时来进行细胞毒性介导的溶解分析。在培育后,将板离心且将上清液样品转移至具有低背景荧光的96孔板(荧光免疫板,Nunc,Roskilde,Denmark)。

随后,将增强溶液(PerkinElmer,Groningen,The Netherlands)添加至每个孔。用时间分辨荧光计(Victor 1420多标记计数器,LKB-Wallac,Finland)测量释放的铕。荧光以每秒计数(CPS)表示。通过将适当数目(1×102-1×108)的融合体与1%triton(sigma-aldrich)一起培育适当量的时间来确定由靶融合体释放的铕的最大百分比。通过在没有效应细胞的情况下培育标记的靶融合体来测量由靶融合体自发释放的铕。接着将泄漏百分比计算为:(自发释放/最大释放)×100%。最后,将细胞毒性介导的溶解的百分比计算为%溶解=[(测量的溶解-自发溶解-自发释放)/(最大释放-自发释放)]×100%。通过观察随不同效靶比而变的溶解百分比来分析数据。

在一个实施例中,相比于MSC或MSC-加扰产生的融合体,由MSC-HLA-G细胞产生的融合体将在特定时间点具有减小的靶细胞溶解百分比。

实例84:修饰融合体源细胞以降低NK溶解活性

此实例描述衍生自细胞来源的融合体组合物的产生,所述融合体组合物已被修饰以降低细胞毒性介导的通过NK细胞的细胞溶解。在一个实施例中,细胞毒性介导的源细胞或融合体通过NK细胞的细胞溶解是融合体的免疫原性的量度。

在此实例中,通过先前实例中所述的任一种方法产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC,阳性对照)、经慢病毒介导的HLA-G表达修饰的间充质干细胞(下文称为MSC-HLA-G)和经慢病毒介导的空载体表达修饰的间充质干细胞(下文称为MSC-空载体,阴性对照)。

NK细胞介导的融合体溶解是通过如Bouma等人《人类免疫学》35(2):85-92;1992和van Besouw等人《移植》70(1):136-143;2000中所述的铕释放分析确定的。将NK细胞(下文称为效应细胞)根据Crop等人《细胞移植(Cell transplantation)》(20):1547-1559;2011中的方法从适当供体分离,且在37C下在圆底96孔板中用同种异体γ照射的PMBC和200IU/mL IL-2(proleukin,Chiron BV Amsterdam,The Netherlands)刺激7天。将融合体用铕-二亚乙基三胺五乙酸盐(DTPA)(sigma,St.Louis,MO,USA)标记。

在第7天,通过在涂铺之后,以1000:1-1:1与1:1.25-1:1000范围内的效应细胞/靶细胞比将63Eu标记的融合体与效应细胞一起在96孔板中培育1、2、3、4、5、6、8、10、15、20、24、48小时来进行细胞毒性介导的溶解分析。在培育后,将板离心且将上清液样品转移至具有低背景荧光的96孔板(荧光免疫板,Nunc,Roskilde,Denmark)。

随后,将增强溶液(PerkinElmer,Groningen,The Netherlands)添加至每个孔。用时间分辨荧光计(Victor 1420多标记计数器,LKB-Wallac,Finland)测量释放的铕。荧光以每秒计数(CPS)表示。通过将适当数目(1×102-1×108)的融合体与1%triton(sigma-aldrich)一起培育适当量的时间来确定由靶融合体释放的铕的最大百分比。通过在没有效应细胞的情况下培育标记的靶融合体来测量由靶融合体自发释放的铕。接着将泄漏百分比计算为:(自发释放/最大释放)×100%。最后,将细胞毒性介导的溶解的百分比计算为%溶解=[(测量的溶解-自发溶解-自发释放)/(最大释放-自发释放)]×100%。通过观察随不同效靶比而变的溶解百分比来分析数据。

在一个实施例中,相比于MSC或MSC-加扰产生的融合体,由MSC-HLA-G细胞产生的融合体将在适当时间点具有减小的溶解百分比。

实例85:修饰融合体源细胞以降低CD8杀手T细胞溶解

此实例描述衍生自细胞来源的融合体组合物的产生,所述融合体组合物已被修饰以降低细胞毒性介导的通过CD8+T细胞的细胞溶解。在一个实施例中,细胞毒性介导的源细胞或融合体通过CD8+T细胞的细胞溶解是融合体的免疫原性的量度。

在此实例中,通过先前实例中所述的任一种方法产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC,阳性对照)、经慢病毒介导的HLA-G表达修饰的间充质干细胞(下文称为MSC-HLA-G)和经慢病毒介导的空载体表达修饰的间充质干细胞(下文称为MSC-空载体,阴性对照)。

CD8+T细胞介导的融合体溶解是通过如Bouma等人《人类免疫学》35(2):85-92;1992和van Besouw等人《移植》70(1):136-143;2000中所述的铕释放分析确定的。将CD8+T细胞(下文称为效应细胞)根据Crop等人《细胞移植(Cell transplantation)》(20):1547-1559;2011中的方法从适当供体分离,且在37C下在圆底96孔板中用同种异体γ照射的PMBC和200IU/mL IL-2(proleukin,Chiron BV Amsterdam,The Netherlands)刺激7天。将融合体用铕-二亚乙基三胺五乙酸盐(DTPA)(sigma,St.Louis,MO,USA)标记。

在第7天,通过在涂铺之后,以1000:1-1:1与1:1.25-1:1000范围内的效应细胞/靶细胞比将63Eu标记的融合体与效应细胞一起在96孔板中培育1、2、3、4、5、6、8、10、15、20、24、48小时来进行细胞毒性介导的溶解分析。在培育后,将板离心且将20μl上清液转移至具有低背景荧光的96孔板(荧光免疫板,Nunc,Roskilde,Denmark)。

随后,将增强溶液(PerkinElmer,Groningen,The Netherlands)添加至每个孔。用时间分辨荧光计(Victor 1420多标记计数器,LKB-Wallac,Finland)测量释放的铕。荧光以每秒计数(CPS)表示。通过将适当数目(1×102-1×108)的融合体与1%triton(sigma-aldrich)一起培育适当量的时间来确定由靶融合体释放的铕的最大百分比。通过在没有效应细胞的情况下培育标记的靶融合体来测量由靶融合体自发释放的铕。接着将泄漏百分比计算为:(自发释放/最大释放)×100%。最后,将细胞毒性介导的溶解的百分比计算为%溶解=[(测量的溶解-自发溶解-自发释放)/(最大释放-自发释放)]×100%。通过观察随不同效靶比而变的溶解百分比来分析数据。

在一个实施例中,相比于MSC或MSC-加扰产生的融合体,由MSC-HLA-G细胞产生的融合体将在适当时间点具有减小的溶解百分比。

实例86:修饰融合体源细胞以降低T细胞活化

此实例描述修饰的融合体的产生,所述融合体将具有如通过混合淋巴细胞反应(MLR)评估的降低的T细胞活化和增殖。

T细胞增殖和活化是融合体的免疫原性的量度。通过融合体组合物在MLR反应中刺激T细胞增殖可表明体内T细胞增殖的刺激。

在一个实施例中,如通过混合淋巴细胞反应(MLR)所评估,从修饰的源细胞产生的融合体具有降低的T细胞活化和增殖。在一个实施例中,从修饰的源细胞产生的融合体不在体内产生免疫反应,因此维持融合体组合物的功效。

在此实例中,通过先前实例中所述的任一种方法产生融合体。融合体由以下产生:未修饰的间充质干细胞(下文称为MSC,阳性对照)、经慢病毒介导的IL-10表达修饰的间充质干细胞(下文称为MSC-IL-10)和经慢病毒介导的空载体表达修饰的间充质干细胞(下文称为MSC-空载体,阴性对照)。

BALB/c和C57BL/6脾细胞用作刺激或应答细胞。值得注意的是,这些细胞的来源可与常用的人源性刺激/应答细胞交换。另外,任何哺乳动物纯化的同种异体CD4+T细胞群体、CD8+T细胞群体或CD4-/CD8-可用作应答群体。

通过机械解离使用完全磨砂的载玻片分离小鼠脾细胞,接着用溶解缓冲液(Sigma-Aldrich,St-Louis,MO)溶解红细胞。在实验之前,用20Gy的γ射线照射刺激细胞以防止其与应答细胞反应。接着通过将等量的刺激和应答细胞(或替代浓度,同时维持1:1比率)添加至含完全DMEM-10培养基的圆底96孔板来制备共培养物。在不同的时间间隔(t=0、6、12、24、36、48小时)将适量的融合体(以1×101-1×108范围内的若干浓度)添加至共培养物。

通过添加1μCi的[3H]-胸苷(Amersham,Buckinghamshire,UK)以允许掺入来评估增殖。在t=2、6、12、24、36、48、72小时处将[3H]-胸苷添加至MLR,且在2、6、12、18、24、36和48小时的延长培养之后使用96孔细胞收集器(Inoteck,Bertold,Japan)将细胞收集至玻璃纤维过滤器上。所有T细胞增殖实验均一式三份地进行。使用microbeta lLuminescence计数器(Perkin Elmer,Wellesley,MA)测量[3H]-胸苷掺入。结果可表示为每分钟计数(cpm)。

在一个实施例中,相比于MSC-空载体或MSC未修饰的融合体对照,MSC-IL10融合体将显示T细胞增殖的减少。

实例87:测量个体中的靶向潜力

此实例评估融合体靶向特定身体部位的能力。在一个实施例中,融合体可靶向特定身体部位。靶向是将治疗剂的活性限制于一个或多个相关治疗部位的方式。

向八周龄C57BL/6J小鼠(Jackson Laboratories)静脉内注射表达萤火虫荧光素酶的融合体或细胞。通过先前实例中所述的任一种方法,从稳定表达萤火虫荧光素酶的细胞或不表达荧光素酶的细胞(阴性对照)产生融合体。在融合体或细胞注射后1、2、3、4、5、6、8、12和24小时对小鼠组进行安乐死。

在安乐死前五分钟,小鼠接受以150mg/kg剂量腹膜内注射的生物发光底物(Perkin Elmer)以使荧光素酶可视化。生物发光成像系统被校准以补偿所有装置设置。接着使小鼠安乐死且收集肝脏、肺脏、心脏、脾脏、胰脏、胃肠道和肾脏。成像系统(PerkinElmer)用于获得这些离体器官的生物发光图像。使用辐射光子(Radiance Photons)测量生物发光信号,且将总通量(Total Flux)用作测量值。通过围绕离体器官产生感兴趣区域(ROI),以得到以光子/秒计的值。计算目标器官(例如肝脏)与非目标器官(例如来自肺脏、心脏、脾脏、胰脏、胃肠道和肾脏的光子/秒的总和)之间的光子/秒的比,作为靶向肝脏的量度。

在一个实施例中,在融合体和细胞中,肝脏与其它器官之间的光子/秒的比均将大于1,这将表明融合体靶向肝脏。在一个实施例中,阴性对照动物将在所有器官中显示低得多的光子/秒。

实例88:测量个体中的外源药剂递送

此实例描述个体中包含外源药剂的融合体的递送的定量。通过先前实例中所述的任一种方法,从表达Gaussia荧光素酶的细胞或从不表达荧光素酶的细胞(阴性对照)制备融合体。

将阳性对照细胞或融合体静脉内注射至小鼠中。使用26号胰岛素注射针在5-8秒内递送融合体或细胞。使用体内成像系统(Xenogen Corporation,Alameda,CA)在注射后1、2或3天对小鼠进行体内生物发光成像。

在即将使用之前,在酸化甲醇中制备考伦特嗪,一种荧光素或发光分子(5mg/ml)且立即注射至小鼠尾静脉中。使用XGI-8气体麻醉系统在加热台上对小鼠进行连续麻醉。

通过在紧接在静脉内尾静脉注射考伦特嗪(4μg/g体重)后的5分钟内获取光子计数来获得生物发光成像。使用软件(Xenogen)分析获取的数据且将其覆叠于光视图图像上。使用自动信号强度轮廓工具产生感兴趣区域(ROI)且通过相同动物的背景减除进行标准化。使用三个滤光片在580、600和620nm的波长与3-10分钟暴露时间下进行连续数据采集,以定位小鼠体内的生物发光光源。

此外,在每个时间点,通过腹部触诊收集尿液样品。

从每只小鼠的尾静脉获得血液样品(50μl),放入肝素化或EDTA管中。对于血浆分离,将血液样品在4℃下以1.3×g离心25分钟。

接着,在将样品与50μM Gaussia荧光素酶底物(Nanolight,Pinetop,AZ)混合之后,使用5μl血液、血浆或尿液样品进行Gaussia荧光素酶活性分析。

在一个实施例中,阴性对照样品将对荧光素酶呈阴性,且阳性对照样品将来自施用细胞的动物。在一个实施例中,来自施用表达Gaussia荧光素酶的融合体的动物的样品将在每个样品中对荧光素酶呈阳性。

参见例如El-Amouri SS等人,《分子生物技术(Molecular biotechnology)》53(1):63-73,2013。

实例89:跨融合体的脂质双层的主动转运

此实例描述2-NBDG(2-(N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)氨基)-2-脱氧葡萄糖)的水平的定量,2-NBDG为一种可用于监测活细胞中的葡萄糖摄取且因此监测跨脂质双层的主动转运的荧光葡萄糖类似物。在一个实施例中,此分析可用于测量葡萄糖摄取的水平和跨融合体的脂质双层的主动转运。

通过先前实例中所述的任一种方法来产生融合体组合物。接着将足够数量的融合体在不含葡萄糖的DMEM、20%胎牛血清和1×青霉素/链霉素中在37℃和5%CO2下培育2小时。在2小时葡萄糖饥饿时段之后,改变培养基以使其包括不含葡萄糖的DMEM、20%胎牛血清、1×青霉素/链霉素和20μM 2-NBDG(ThermoFisher)且在37℃和5%CO2下培育2小时。相同地处理阴性对照融合体,除了添加等量的DMSO(用于2-NBDG的媒剂)来代替2-NBDG。

接着将融合体用1×PBS洗涤三次且再悬浮于适当缓冲液中,且转移至96孔成像板。接着使用GFP光立方体(469/35激发滤光片和525/39发射滤光片)在荧光计中测量2-NBDG荧光,以定量在1小时装载时段内已跨融合体膜转运且累积于融合体中的2-NBDG的量。

在一个实施例中,相比于阴性(DMSO)对照,经2-NBDG处理的融合体中的2-NBDG荧光将更高。用525/39发射滤光片的荧光测量将与存在的2-NBDG分子的数目相关。

实例90:通过非内吞途径递送融合体

此实例描述通过非内吞途径融合体递送Cre至受体细胞的定量。

在一个实施例中,融合体将通过融合体介导的非内吞途径递送药剂。不希望受理论束缚,在不需要任何内吞作用介导的融合体吸收的情况下将融合体的内腔中携带的药剂(例如Cre)直接递送至受体细胞的细胞溶质将通过融合体介导的非内吞途径递送发生。

在此实例中,融合体在其质膜上包含表达仙台病毒H和F蛋白的HEK293T细胞(Tanaka等人,2015,《基因疗法(Gene Therapy)》,22(2014年10月),1-8.https://doi.org/10.1038/gt.2014.123)。另外,融合体表达mTagBFP2荧光蛋白和Cre重组酶。靶细胞为RPMI8226细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和Cre作为递送标记。

如下地对通过本文所述的方法产生的融合体分析通过非内吞途径的Cre递送。将受体细胞涂铺至黑色的透明底部96孔板中。随后,在涂铺受体细胞之后24小时,将表达Cre重组酶蛋白且具有特定融合剂蛋白的融合体施用至DMEM培养基中的受体细胞。为了确定通过非内吞途径的Cre递送水平,用内体酸化抑制剂氯奎(30μg/mL)处理接受融合体的受体细胞的平行组。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育16小时且通过成像评估药剂递送Cre。

对细胞成像以在视场或孔中阳性鉴别RFP阳性细胞相对于GFP阳性细胞。在此实例中,使用自动化荧光显微镜对细胞板成像。通过首先在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换。

使用405nm LED和DAPI滤光立方体对Hoechst成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集不同细胞组的图像。

设定采集设置,以使得RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。

用与荧光显微镜一起提供的软件或其它软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,1997-2007)进行GFP和RFP阳性孔的分析。使用60μm宽度的滚球背景减除算法对图像进行预处理。在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞用于设置阈限,且排除太小或太大而无法成为Hoechst阳性细胞的区域。

在总细胞掩码内,通过对显著高于背景的细胞再次设置阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个GFP和RFP细胞荧光来鉴别GFP和RFP阳性细胞。

在含有受体细胞的对照孔中鉴别的RFP阳性细胞的数目用于从含有融合体的孔中的RFP阳性细胞的数目减去(以减去非特异性Loxp重组)。接着将RFP阳性细胞(接受Cre的受体细胞)的数目除以GFP阳性细胞(未接受Cre的受体细胞)与RFP阳性细胞的总和,以定量递送至受体细胞群体的融合体Cre的比例。将水平标准化为施用至受体细胞的融合体的给定剂量。为了计算通过非内吞途径递送的融合体Cre的值,确定在存在氯奎的情况下的融合体Cre递送水平(FusL+CQ)以及在不存在氯奎的情况下的融合体Cre递送水平(FusL-CQ)。为了确定通过非内吞途径递送的融合体Cre的标准化值,使用以下方程式:[(FusL-CQ)-(FusL+CQ)]/(FusL-CQ)。

在一个实施例中,对于给定融合体,通过非内吞途径递送的融合体Cre的平均水平将在氯奎处理的受体细胞的0.1-0.95,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大的范围内。

实例91:通过内吞途径递送融合体

此实例描述通过内吞途径融合体递送Cre至受体细胞。

在一个实施例中,融合体将通过融合体介导的内吞途径递送药剂。不希望受理论束缚,在吸收途径具有内吞作用依赖性的情况下将融合体的内腔中携带的药剂(例如货物)递送至受体细胞将通过融合体介导的内吞途径递送发生。

在此实例中,融合体包含微囊泡,所述微囊泡通过将在质膜上表达融合剂蛋白的HEK293T细胞挤出通过2μm过滤器而产生(Lin等人,2016,《生物医学微装置(BiomedicalMicrodevices)》18(3).doi.org/10.1007/s10544-016-0066-y)(Riedel,Kondor-Koch和Garoff,1984,《欧洲分子生物学学会杂志(The EMBO Journal)》,3(7),1477-83.检索自www.ncbi.nlm.nih.gov/pubmed/6086326)。另外,融合体表达mTagBFP2荧光蛋白和Cre重组酶。靶细胞为PC3细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和Cre(作为标记)递送。

如下地分析通过本文所述的方法产生的融合体通过内吞途径的Cre递送。将受体细胞涂铺于与待使用的成像系统相容的细胞培养多孔板中(在此实例中,将细胞涂铺于黑色的透明底部96孔板中)。随后,在涂铺受体细胞之后24小时,将表达Cre重组酶蛋白且具有特定融合剂蛋白的融合体施用至DMEM培养基中的受体细胞。为了确定通过内吞途径的Cre递送水平,用内体酸化抑制剂氯奎(30μg/mL)处理接受融合体的受体细胞的平行组。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育16小时且通过成像评估药剂递送Cre。

对细胞成像以在视场或孔中阳性鉴别RFP阳性细胞相对于GFP阳性细胞。在此实例中,使用自动荧光显微镜对细胞板成像。通过首先在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换。

使用405nm LED和DAPI滤光立方体对Hoechst成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集不同细胞组的图像。

设定采集设置,以使得RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。

用与荧光显微镜一起提供的软件或其它软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,1997-2007)进行GFP和RFP阳性孔的分析。使用60μm宽度的滚球背景减除算法对图像进行预处理。在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为Hoechst阳性细胞的区域。

在总细胞掩码内,通过对显著高于背景的细胞再次取阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个GFP和RFP细胞荧光来鉴别GFP和RFP阳性细胞。

在含有受体细胞的对照孔中鉴别的RFP阳性细胞的数目用于从含有融合体的孔中的RFP阳性细胞的数目减去(以减去非特异性Loxp重组)。接着将RFP阳性细胞(接受Cre的受体细胞)的数目除以GFP阳性细胞(未接受Cre的受体细胞)与RFP阳性细胞的总和,以定量递送至受体细胞群体的融合体Cre的比例。将水平标准化为施用至受体细胞的融合体的给定剂量。为了计算通过内吞途径递送的融合体Cre的值,确定在存在氯奎的情况下的融合体Cre递送水平(FusL+CQ)以及在不存在氯奎的情况下的融合体Cre递送水平(FusL-CQ)。为了确定通过内吞途径递送的融合体Cre的标准化值,使用以下方程式:[(FusL-CQ)-(FusL+CQ)]/(FusL-CQ)。

在一个实施例中,对于给定融合体,通过内吞途径递送的融合体Cre的平均水平将在氯奎处理的受体细胞的0.01-0.6,或至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或更大的范围内。

实例92:通过发动蛋白介导的途径、巨胞饮途径或肌动蛋白介导的途径递送融合体

此实例描述通过发动蛋白介导的途径融合体递送Cre至受体细胞。可如先前实例中所述地产生包含微囊泡的融合体。根据先前实例对融合体分析通过发动蛋白介导的途径递送Cre,除了一组接受融合体的受体细胞用发动蛋白抑制剂Dynasore(120μM)处理。为了计算通过发动蛋白介导的途径递送的融合体Cre的值,确定在存在Dynasore的情况下的融合体Cre递送水平(FusL+DS)以及在不存在Dynasore的情况下的融合体Cre递送水平(FusL-DS)。可如先前实例中所述地计算递送的融合体Cre的标准化值。

此实例还描述通过巨胞饮将Cre递送至受体细胞。可如先前实例中所述地产生包含微囊泡的融合体。根据先前实例对融合体分析通过巨胞饮递送Cre,除了一组接受融合体的受体细胞用巨胞饮抑制剂5-(N-乙基-N-异丙基)阿米洛利(EIPA)(25μM)处理。为了计算通过发动巨胞饮递送的融合体Cre的值,确定在存在EIPA的情况下的融合体Cre递送水平(FusL+EPIA)以及在不存在EPIA的情况下的融合体Cre递送水平(FusL-EIPA)。可如先前实例中所述地计算递送的融合体Cre的标准化值。

此实例还描述通过肌动蛋白介导的途径融合体递送Cre至受体细胞。可如先前实例中所述地产生包含微囊泡的融合体。根据先前实例对融合体分析通过巨胞饮递送Cre,除了一组接受融合体的受体细胞用肌动蛋白聚合抑制剂Latrunculin B(6μM)处理。为了计算通过肌动蛋白介导的途径递送的融合体Cre的值,确定在存在Latrunculin B的情况下的融合体Cre递送水平(FusL+LatB)以及在不存在Latrunculin B的情况下的融合体Cre递送水平(FusL-LatB)。可如先前实例中所述地计算递送的融合体Cre的标准化值。

实例93:细胞器的递送

此实例描述融合体与细胞的体外融合。在一个实施例中,融合体与细胞的体外融合可使得将融合体线粒体货物递送至受体细胞。

如下地分析通过本文所述的方法所述的方法产生的融合体将其线粒体递送至受体细胞的能力。

在此特定实例中,融合体为HEK293T细胞,所述细胞在其膜上表达融合剂蛋白,以及标记线粒体的线粒体靶向的DsRED(mito-DsRED)蛋白。将受体细胞涂铺于与待使用的成像系统相容的细胞培养多孔板中(在此实例中,将细胞涂铺于玻璃底成像培养皿中)。受体细胞稳定表达胞质GFP。

随后,在涂铺受体细胞之后24小时,将表达mito-DsRED且具有特定融合剂蛋白的融合体施用至DMEM培养基中的受体细胞。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育4小时,且通过暴露于pH 6.0磷酸盐缓冲盐水一分钟(或将对照细胞暴露于pH 7.4磷酸盐缓冲盐水)诱导VSVG介导的融合。在诱导融合后,将细胞再培育16小时且通过成像评估线粒体递送。

在此实例中,将细胞在维持于37C和5%CO2下时,在具有63×油浸物镜的ZeissLSM 710共聚焦显微镜上成像。GFP经受488nm激光激发,且通过带通495-530nm滤光片记录发射。DsRED经受543nm激光激发,且通过带通560-610nm滤光片记录发射。扫描细胞以阳性鉴别对胞质GFP荧光和mito-DsRED荧光呈阳性的细胞。

在相同细胞中发现胞质GFP和mito-DsRED线粒体二者的存在,表明细胞经历了VSVG介导的融合,且因此线粒体已从融合体递送至受体细胞。

实例94:DNA的体外递送

此实例描述使用融合体将DNA体外递送至细胞。此实例定量融合体使用编码外源基因GFP(一种替代治疗货物)的质粒递送DNA的能力。

由通过先前实例中所述的任一种方法产生的细胞源性囊泡或细胞源性细胞生物物质产生的融合体组合物(除了融合体)被工程化,以使得融合剂与Cre的开放阅读框架同框。在产生融合体后,将其另外用具有编码GFP的序列的质粒(System Biosciences,Inc.)核染。

参见例如Chen X等人,《基因与疾病(Genes Dis.)》2015年3月;2(1):96-105.DOI:10.1016/j.gendis.2014.12.001。

作为阴性对照,将融合体用具有编码β-肌动蛋白的序列的质粒核染。

接着将足够数量的融合体连同具有loxP-STOP-loxP-tdTomato报告子的受体NIH/3T3成纤维细胞细胞系在37℃和5%CO2下在含有20%胎牛血清和1×青霉素/链霉素的DMEM中培育48小时的时段。在48小时培育后,接着通过FACS,使用FACS细胞仪(BectonDickinson,San Jose,CA,USA)以561nm激光激发分离tdTomato阳性细胞且在590+/-20nm处收集发射。接着使用DNA提取溶液(Epicentre)分离总DNA且使用扩增600bp片段的特异性针对GFP的引物(参见表12)进行PCR。在凝胶电泳后存在于凝胶上的600bp片段将接着证实向受体细胞的DNA递送的存在。

表12.扩增500bp片段的GFP引物序列

引物 序列
GFP-F ATGAGTAAAGGAGAAGAACTTTTCAC
GFP-R GTCCTTTTACCAGACAACCATTAC

在一个实施例中,相比于阴性对照,具有GFP质粒的融合体中通过融合体的体外核酸货物递送更高。在阴性对照中检测到可忽略的GFP荧光。

实例95:体内递送DNA

此实例描述通过融合体将DNA体内递送至细胞。将DNA体内递送至细胞使得在受体细胞内表达蛋白质。

体内融合体DNA递送将证明在生物体(小鼠)内的受体细胞中的DNA和蛋白质表达的递送。

如本文所述地制备表达肝定向融合剂的融合体。在产生融合体后,将其另外用具有编码Cre重组酶的序列的质粒核染。

制备融合体用于体内递送。对融合体悬浮液进行离心。将融合体的集结粒再悬浮于注射用无菌磷酸盐缓冲盐水中。

使用核酸检测方法,例如PCR来证实融合体含有DNA。

受体小鼠带有一个被CRE蛋白修饰的loxp-荧光素酶基因组DNA基因座,所述蛋白由通过融合体递送的DNA制成,以开启荧光素酶的表达(JAX#005125)。用于此实例的阳性对照是与小鼠品系配对的受体小鼠的后代,所述品系仅在肝脏中表达来自其自身基因组的相同蛋白质(白蛋白-CRE JAX#003574)。来自此配对的后代带有每个等位基因之一(loxp-荧光素酶,白蛋白-CRE)。通过向受体小鼠注射不表达融合剂的融合体或具有融合剂但不含Cre DNA的融合体来进行阴性对照。

通过静脉内(IV)尾静脉施用将融合体递送至小鼠中。将小鼠置于市售的小鼠限制器(Harvard Apparatus)中。在限制之前,通过将动物的笼子置于循环水浴上而对动物加温。一旦进入限制器,使动物适应环境。准备由30G针尖、3"长度的PE-10管和28G针组成的IV导管且用肝素化生理盐水冲洗。用70%酒精棉片清洁尾巴。接着,将导管针用镊子固定且缓慢引入至尾侧静脉中,直至血液在管中变得可见。将融合体溶液(约500K-5M融合体)抽吸至1cc结核菌素注射器中且连接至输液泵。将融合体溶液以20μL/min的速率递送30秒至5分钟(取决于剂量)。在输注完成后,移开导管,且向注射部位施加压力直至停止任何出血。将小鼠放回其笼子中且使其恢复。

在融合后,DNA将被转录和翻译成CRE蛋白,其将接着易位至细胞核以进行重组,从而引起荧光素酶的组成性表达。腹膜内施用D-荧光素(Perkin Elmer,150mg/kg)使得能够通过产生生物发光来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后8-20分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的生物发光最大值。在软件中创建肝脏的特定区域且设置收集暴露时间,以使得计数率高于600(在此区域中),以产生可解释的辐射率(光子/秒/平方厘米/立体弧度)测量值。将生物发光辐射率的最大值记录为生物发光分布的图像。专门监测肝组织,以进行高于背景(未治疗的动物)和阴性对照的辐射率测量。在注射后24小时进行测量以观察荧光素酶活性。接着对小鼠进行安乐死且收集肝脏。

通过将新鲜收集的组织浸入4℃下的4%多聚甲醛/0.1M磷酸钠缓冲液pH 7.4中1-3小时来进行固定和包埋。接着将组织浸入4℃下的无菌15%蔗糖/1×PBS中(3小时至过夜)。接着将组织包埋于O.C.T.(Baxter编号M7148-4)中。将组织适当地定向在块中以进行切片(横截面)。接着使用以下方法在液氮中冷冻组织:将块的底部三分之一放入液氮中,使其冷冻直至除了O.C.T.中心以外的所有部分都被冷冻,且使得在干冰上结束冷冻。通过低温恒温器将块切成5-7微米的切片,放置在载玻片上且重新冷冻以染色。

使用洋地黄毒苷标记的核酸探针(用于CRE DNA和荧光素酶mRNA检测)在组织切片上进行原位杂交(使用标准方法),用洋地黄毒苷荧光抗体标记且通过共聚焦显微镜观察。

在实施例中,与未治疗的动物(无CRE且无融合体)和阴性对照相比,阳性对照动物(在不注射融合体的情况下通过繁殖重组)将在肝脏中显示生物发光强度,而与阴性对照(无融合剂的融合体)和未治疗的动物相比,注射药剂的动物将在肝脏中显示生物发光。

在实施例中,相比于阴性对照和未治疗的动物,检测注射药剂的动物的组织切片中的核酸将展示在组织的细胞中检测到CRE重组酶和荧光素酶mRNA,而阳性对照将在整个组织中显示荧光素酶mRNA和CRE重组酶DNA的水平。

将通过基于原位杂交的DNA检测和其在动物的受体组织中的共定位来检测由融合体递送DNA的证据。将通过生物发光成像检测由DNA表达的蛋白质的活性。在实施例中,融合体将递送会引起蛋白质产生和活性的DNA。

实例96:体外递送mRNA

此实例描述融合体与细胞的体外融合。在一个实施例中,融合体与细胞的体外融合使得将指定的mRNA递送至受体细胞。

如下分析通过本文描述的方法产生的融合体将指定的mRNA递送至受体细胞的能力。在此特定实例中,融合体为细胞生物物质(缺少细胞核),其由表达Cre和GFP的3T3小鼠成纤维细胞产生。接着用HVJ-E融合剂蛋白处理细胞生物物质以产生融合体。

将受体小鼠巨噬细胞涂铺至与待使用的成像系统相容的细胞培养多孔板中(在此实例中,将细胞涂铺于玻璃底成像培养皿中)。受体细胞在CMV启动子下稳定表达“LoxP-stop-LoxP-tdTomato”盒,所述启动子在通过Cre重组后诱导tdTomato表达,表明向受体细胞递送Cre蛋白。

随后,在涂铺受体细胞之后24小时,将表达Cre重组酶蛋白且具有特定融合剂蛋白的融合体施用至DMEM培养基中的受体细胞。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育16小时且通过成像评估mRNA递送。

成像前,将细胞在DMEM培养基中用1μg/mL Hoechst 33342染色10分钟。在此实例中,将细胞在维持于37C和5%CO2下时,在具有63×油浸物镜的Zeiss LSM 710共聚焦显微镜上成像。Hoechst经受405nm激光激发,且通过带通430-460nm滤光片记录发射。GFP经受488nm激光激发,且通过带通495-530nm滤光片记录发射。tdTomato经受543nm激光激发,且通过带通560-610nm滤光片记录发射。

首先,扫描细胞以阳性地鉴别单核tdTomato阳性细胞。tdTomato阳性细胞的存在表明细胞已经历融合,且单个核表明融合是通过细胞生物学融合体供体。首先对这些鉴别的细胞成像且接着随后使用488nm激光进行光漂白,以部分淬灭GFP荧光。接着随时间推移对细胞成像以评估GFP荧光的恢复,这将展示新GFP蛋白的翻译且因此展示通过供体融合体递送的GFP mRNA的存在。

使用ImageJ软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,rsb.info.nih.gov/ij/,1997-2007)进行所关注细胞中的Hoechst、GFP和tdTomato荧光的分析。首先,使用60μm宽度的滚球背景减除算法对图像进行预处理。在光漂白的细胞内,对GFP荧光取阈值以去除背景。接着在光漂白之前和之后的不同时间分析光漂白的细胞的GFP平均荧光强度。

在此特定实例内,将表达Cre和GFP且具有施用的融合剂HVJ-E(+融合剂)的3T3小鼠成纤维细胞细胞生物物质施用至表达“LoxP-stop-LoxP-tdTomato”盒的受体小鼠巨噬细胞。代表性图像和数据在图5中示出。对于此特定实例,GFP荧光强度在光漂白之后10小时恢复至原始强度的25%,表明在受体细胞中递送主动翻译的mRNA。

实例97:体外递送siRNA

此实例描述通过融合体将短干扰RNA(siRNA)体外递送至细胞。将siRNA体外递送至细胞引起受体细胞内的蛋白质表达的抑制。这可以用于抑制表达对细胞有害的蛋白质的活性,从而使细胞正常运行。

如下分析通过本文描述的方法产生的融合体将指定的siRNA递送至受体细胞的能力。如本文所述地制备融合体。在产生融合体后,将其另外用具有特异性抑制GFP的序列的siRNA电穿孔。靶向GFP的双链siRNA的序列为5'GACGUAAACGGCCACAAGUUC 3'和其互补序列3'CGCUGCAUUUGCCG GUGUUCA 5'(应注意,在siRNA序列的3'端处存在2个碱基对长的突出端)。作为阴性对照,将融合体用具有特异性抑制荧光素酶的序列的siRNA电穿孔。靶向荧光素酶的双链siRNA的序列为5'CUUACGCUGAGUACUUCGATT 3'和其互补序列3'TTGAAUGCGACUCAUGAAGCU 5'(应注意,在siRNA序列的3'端处存在2个碱基对长的突出端)。

接着将融合体施用至组成性表达GFP的受体细胞。将受体细胞涂铺至黑色的透明底部96孔板中。随后,在涂铺受体细胞后24小时,将表达的融合体施用至DMEM培养基中的受体细胞。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育16小时且通过成像评估药剂递送siRNA。

对细胞成像以阳性鉴别视野或孔中的GFP阳性细胞。在此实例中,使用自动荧光显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。通过首先在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换。

使用405nm LED和DAPI滤光立方体对Hoechst成像。使用465nm LED和GFP滤光体对GFP成像。通过首先在未处理的孔;即,未用任何融合体处理的受体细胞上确立LED强度和积分时间来采集不同细胞组的图像。

设定采集设置,以使得GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。

用与荧光显微镜一起提供的软件或其它软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,http://rsb.info.nih.gov/ij/,1997-2007)进行GFP阳性孔的分析。使用60μm宽度的滚球背景减除算法对图像进行预处理。在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为Hoechst阳性细胞的区域。

在总细胞掩码内,通过对显著高于背景的细胞再次取阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个GFP细胞荧光来鉴别GFP阳性细胞。计算总细胞中的GFP阳性细胞的百分比。

在实施例中,相比于用含有针对荧光素酶的siRNA的融合体处理的孔中的GFP阳性细胞的百分比,用含有针对GFP的siRNA的融合体处理的孔的GFP阳性细胞的百分比将小至少1%、2%、3%、4%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%。

实例98:体内递送mRNA

此实例描述通过融合体将信使RNA(mRNA)体内递送至细胞。在一个实施例中,将mRNA体内递送至细胞引起蛋白质在受体细胞内的表达。在一个实施例中,此递送方法可用于补充由于基因突变而不存在的蛋白质,允许细胞正常运行,且重定向细胞的活性以执行功能,例如治疗功能。

在一个实施例中,体内递送融合体mRNA表明生物体(例如小鼠)内的受体细胞中的信使RNA递送和蛋白质表达。

在一个实施例中,制备表达肝脏定向的融合剂,且产生表达Cre的mRNA的融合体用于体内递送。

如本文所述地制备融合体。对融合体悬浮液进行离心。将融合体的集结粒再悬浮于注射用无菌磷酸盐缓冲盐水中。

使用核酸检测方法,例如PCR来证实融合体表达mRNA。

受体小鼠带有一个被CRE蛋白修饰的loxp-荧光素酶基因组DNA基因座,所述蛋白由通过融合体递送的mRNA制成,以开启荧光素酶的表达(JAX#005125)。用于此实例的阳性对照是与小鼠品系配对的受体小鼠的后代,所述品系仅在肝脏中表达来自其自身基因组的相同蛋白质(白蛋白-CRE JAX#003574)。来自此配对的后代带有每个等位基因之一(loxp-荧光素酶,白蛋白-CRE)。通过向受体小鼠注射不表达融合剂的融合体或具有融合剂但不表达Cre mRNA的融合体来进行阴性对照。

通过静脉内(IV)尾静脉施用将融合体递送至小鼠中。将小鼠置于市售的小鼠限制器(Harvard Apparatus)中。在限制之前,通过将动物的笼子置于循环水浴上而对动物加温。一旦进入限制器,使动物适应环境。准备由30G针尖、3"长度的PE-10管和28G针组成的IV导管且用肝素化生理盐水冲洗。用70%酒精棉片清洁尾巴。接着,将导管针用镊子固定且缓慢引入至尾侧静脉中,直至血液在管中变得可见。将融合体溶液(约500K-5M融合体)抽吸至1cc结核菌素注射器中且连接至输液泵。将融合体溶液以20μL/min的速率递送30秒至5分钟(取决于剂量)。在输注完成后,移开导管,且向注射部位施加压力直至停止任何出血。将小鼠放回其笼子中且使其恢复。

在融合后,mRNA在受体细胞质中翻译为CRE蛋白,其接着易位至细胞核以进行重组,引起荧光素酶的组成性表达。腹膜内施用D-荧光素(Perkin Elmer,150mg/kg)使得能够通过产生生物发光来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后8-20分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的生物发光最大值。在软件中创建肝脏的特定区域且设置收集暴露时间,以使得计数率高于600(在此区域中),以产生可解释的辐射率(光子/秒/平方厘米/立体弧度)测量值。将生物发光辐射率的最大值记录为生物发光分布的图像。专门监测肝组织,以进行高于背景(未治疗的动物)和阴性对照的辐射率测量。在注射后24小时进行测量以观察荧光素酶活性。接着对小鼠进行安乐死且收集肝脏。

通过将新鲜收集的组织浸入4℃下的4%多聚甲醛/0.1M磷酸钠缓冲液pH7.4中1-3小时来进行固定和包埋。接着将组织浸入4℃下的无菌15%蔗糖/1×PBS中(3小时至过夜)。接着将组织包埋于O.C.T.(Baxter编号M7148-4)中。将组织适当地定向在块中以进行切片(横截面)。接着使用以下方法在液氮中冷冻组织:将块的底部三分之一放入液氮中,使其冷冻直至除了O.C.T.中心以外的所有部分都被冷冻,且使得在干冰上结束冷冻。通过低温恒温器将块切成5-7微米的切片,放置在载玻片上且重新冷冻以染色。

使用洋地黄毒苷标记的RNA探针(用于CRE mRNA和荧光素酶mRNA检测)在组织切片上进行原位杂交(使用标准方法),用洋地黄毒苷荧光抗体标记且通过共聚焦显微镜观察。

在一个实施例中,相比于未治疗的动物(例如无CRE或融合体)和阴性对照,阳性对照动物(例如在不注射融合体的情况下通过繁殖重组)将显示肝脏中的生物发光强度。在一个实施例中,相比于阴性对照(例如无融合剂的融合体)和未治疗的动物,注射融合体的动物将显示肝脏中的生物发光。

在一个实施例中,相比于阴性对照和未治疗的动物,检测施用融合体的动物的组织切片中的mRNA将展示在组织的细胞中检测到CRE重组酶和荧光素酶mRNA。在一个实施例中,阳性对照将在整个组织中显示荧光素酶mRNA和CRE重组酶mRNA的水平。

在一个实施例中,将通过基于原位杂交的mRNA检测和其在动物的受体组织中的共定位来检测由融合体递送mRNA的证据。在一个实施例中,通过生物发光成像检测由通过融合体递送的mRNA表达的蛋白质的活性。在一个实施例中,融合体递送将引起蛋白质产生和活性的mRNA。

实例99:体外递送蛋白质

此实例表明融合体与细胞的体外融合。在此实例中,融合体与细胞的体外融合使得将Cre蛋白递送至受体细胞。

在此实例中,融合体由具有仙台病毒HVJ-E蛋白的3T3小鼠成纤维细胞产生(Tanaka等人,2015,《基因疗法》,22(2014年10月),1-8.doi.org/10.1038/gt.2014.12)。另外,融合体表达Cre重组酶。靶细胞为初级HEK293T细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和Cre(作为标记)递送。

如下分析通过本文描述的方法产生的融合体将Cre蛋白递送至受体细胞的能力。将受体细胞涂铺于与待使用的成像系统相容的细胞培养多孔板中(在此实例中,将细胞涂铺于黑色的透明底96孔板中)。随后,在涂铺受体细胞之后24小时,将表达Cre重组酶蛋白且具有特定融合剂蛋白的融合体施用至DMEM培养基中的受体细胞。融合体的剂量与涂铺于孔中的受体细胞的数目相关。在施用融合体之后,将细胞板以400g离心5分钟,以帮助引发融合体与受体细胞之间的接触。接着将细胞培育16小时且通过成像评估蛋白质递送。

对细胞成像以在视场或孔中阳性鉴别RFP阳性细胞相对于GFP阳性细胞。在此实例中,使用自动显微镜对细胞板成像。通过首先在DMEM培养基中用1μg/mL Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换。使用405nm LED和DAPI滤光立方体对Hoechst成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒处理的细胞上确立LED强度和积分时间来采集不同细胞组的图像。设定采集设置,以使得RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。

在随LionHeart FX一起提供的Gen5软件中或通过ImageJ软件(Rasband,W.S.,ImageJ,美国国家卫生研究院,Bethesda,Maryland,USA,http://rsb.info.nih.gov/ij/,1997-2007)进行Hoechst、GFP和RFP阳性孔的分析。首先,使用60μm宽度的滚球背景减除算法对图像进行预处理。随后,在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为Hoechst阳性细胞的区域。在总细胞掩码内,通过对显著高于背景的细胞再次取阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个GFP和RFP细胞荧光来鉴别GFP和RFP阳性细胞。

在仅含有受体细胞的对照孔中鉴别的RFP阳性细胞的数目用于从含有融合体的孔中的RFP阳性细胞的数目减去(以减去非特异性Loxp重组)。接着将RFP阳性细胞(接受药剂的受体细胞)的数目除以GFP阳性细胞(未接受药剂的受体细胞)与RFP阳性细胞的总和,以定量受体细胞群体内的融合体药剂递送的分数。

在此特定实例内,将表达Cre且具有(+融合剂)或不具有(-融合剂)施用的融合剂HVJ-E的3T3小鼠成纤维细胞施用至表达“LoxP-GFP-stop-LoxP-RFP”盒的受体293T细胞。通过在受体细胞中诱导RFP表达来评估Cre蛋白的递送。图6中的图示出了对Hoechst染色呈阳性的总细胞(每对中的最左边的条)中的RFP阳性细胞(每对中的最右边的条)的定量。对于此特定实例,对于具有HVJ-E融合剂的3T3 Cre细胞,递送至受体细胞的融合体的分数为0.44。

实例100:体内递送蛋白质

此实例描述通过融合体将治疗剂递送至眼部。

融合体使用先前实例中所述的任一种方法衍生自造血干细胞和祖细胞且装载有缺乏小鼠基因敲除的蛋白质。

将融合体视网膜下注射至缺乏蛋白质的小鼠右眼中,且将媒剂对照注射至小鼠左眼中。当小鼠达到2个月大时,对其中的一部分进行安乐死。

对收集的视网膜组织进行组织学和H&E染色,以计数小鼠的每个视网膜中获救的细胞的数目(描述于Sanges等人,《临床调查杂志(The Journal of ClinicalInvestigation)》,126(8):3104-3116,2016中)。

通过用特异性针对PDE6B蛋白的抗体进行蛋白质印迹,在从2个月大时安乐死的小鼠收集的视网膜中测量注射的蛋白质的水平。

在一个实施例中,相比于用媒剂处理的小鼠右眼,施用融合体的小鼠左眼将具有存在于视网膜的外核层中的增加数目的核。增加的蛋白质暗示突变的PBE6B蛋白质的互补。

实例101:递送以编辑受体DNA

此实例描述用于将基因组CRISPR-Cas9编辑机构体外递送至细胞的融合体。在一个实施例中,通过融合体将基因组CRISPR-Cas9编辑机构体外递送至细胞导致受体细胞中的特定蛋白质的功能缺失。在此实例中,提及的基因组编辑机构为与特异性针对GFP的向导RNA(gRNA)复合的化脓性链球菌(S.pyogenes)Cas9蛋白。

在一个实施例中,融合体为递送治疗剂的底物。在一个实施例中,可以高特异性和效率递送至细胞的治疗剂,如基因组编辑机构可用于灭活基因,且因此,后续基因产物(例如蛋白质)在以高水平或在错误细胞类型中表达时变为病理的。

通过先前实例中所述的任一种方法产生的融合体组合物(除了融合体)被工程化,以使得融合体还包括与特异性针对A.Victoria EGFP的序列的向导RNA(gRNA)序列复合的化脓性链球菌Cas9蛋白。这通过共核染具有新霉素抗性基因的开放阅读框架的PiggyBac载体来实现,新霉素抗性基因与化脓性链球菌Cas9的开放阅读框架框内融合,由P2A裂解序列分离。另外的共核染的PiggyBac载体还包括由U6启动子驱动的gRNA序列(GAAGTTCGAGGGCGACACCC)。作为阴性对照,融合体被工程化,使得融合体包括与不特异性针对小鼠基因组中的任何靶标的加扰gRNA(GCACTACCAGAGCTAACTCA)序列复合的化脓性链球菌Cas9蛋白。

将足够数量的融合体连同NIH/3T3 GFP+细胞在37℃和5%CO2下在含有20%胎牛血清和1×青霉素/链霉素的DMEM中培育48小时的时段。在48小时培育后,制备基因组DNA且用作模板,所述模板具有特异性针对GFP基因中预测的gRNA裂解位点的500bp内的区域的引物(参见表13)。

表13.用于TIDE分析的扩增500bp片段的GFP引物序列

引物 序列
GFP-F ATGAGTAAAGGAGAAGAACTTTTCAC
GFP-R GTCCTTTTACCAGACAACCATTAC

接着纯化PCR扩增子,通过毛细管测序进行测序且接着上传至Tide Calculator,一种快速评估由向导RNA确定的通过靶基因座的CRISPR-Cas9的基因组编辑的网络工具。基于来自两个标准毛细管测序反应的定量序列跟踪数据,软件定量编辑效果。在具有GFP基因座的预测的gRNA裂解位点处的***缺失(***或缺失)导致细胞中的GFP表达的损失,且通过FACS,使用FACS分析(Becton Dickinson,San Jose,CA,USA)以488nm氩激光激发定量,且发射收集于530+/-30nm。FACS软件用于采集和分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。基于每个样品中的GFP信号的强度计算***缺失和GFP功能的后续缺失。

在一个实施例中,相比于阴性对照,在具有GFP基因座的预测的gRNA裂解位点处的***缺失(***或缺失)和细胞中的GFP荧光损失将表明融合体编辑DNA且在体外导致蛋白质功能缺失的能力。在一个实施例中,具有加扰gRNA序列的融合体将不展示***缺失或后续蛋白质功能缺失。

实例102:评估施用融合体后的畸胎瘤形成

此实例描述不存在通过融合体形成畸胎瘤。在一个实施例中,融合体在向个体施用时将不会导致畸胎瘤形成。

通过先前实例中所描述的任一种方法来产生融合体。将融合体、肿瘤细胞(阳性对照)或媒剂(阴性对照)在PBS中皮下注射至小鼠(12-20周龄)的左侧腹中。在融合体、肿瘤细胞或媒剂注射后的八周,通过用卡尺测量测定肿瘤体积而每周分析畸胎瘤(例如肿瘤)生长2-3次。

在一个实施例中,通过卡尺测量,施用融合体或媒剂的小鼠将不具有可测量的肿瘤形成,例如畸胎瘤。在一个实施例中,用肿瘤细胞处理的阳性对照动物将展示可观的肿瘤(例如畸胎瘤)尺寸,如通过卡尺在八周的观察中所测量。

实例103:融合体将活性蛋白体内递送至个体的受体细胞

此实例表明融合体可向个体体内递送蛋白质。这通过核编辑蛋白Cre的递送例示。一旦在细胞内部,Cre易位至细胞核,在其中重新组合且切除两个LoxP位点之间的DNA。当两个LoxP位点之间的DNA为终止密码子且在远端荧光蛋白(如红色荧光蛋白tdTomato)的上游时,可用显微镜测量Cre介导的重组。

将购自Takara(Cre Recombinase Gesicles,Takara产品631449)的含有CRE和融合剂VSV-G的融合体注入B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J小鼠(JacksonLaboratories品系007909)中。以表14中所述的解剖部位、注射体积和注射部位向动物注射。不具有tdTomato且注射融合体的小鼠(FVB.129S6(B6)-GT(ROSA)26Sortm1(Luc)Kael/J,Jackson Laboratories品系005125)和未注射融合体的B6.Cg-Gt(ROSA)26Sortm14(CAG -tdTomato)Hze/J小鼠用作阴性对照。

表14:注射参数

10μl 前后轴:-2横轴/中轴:1.8腹侧:1.5侧:右侧
眼睛 1μl 玻璃体内
肝脏 25μl 额叶中心
脾脏 10μl 在纵向和横向均大约在中心
肾脏 20μl 左肾中心
小肠衬里 10μl 在腹膜外分离最接近腹膜壁的小肠袢,且将其注入衬里中。
心脏 5μl 顶点附近
白色脂肪(附睾脂肪垫) 25μl 左侧、顶部和中心
褐色脂肪(肩胛内) 25μl 左叶,如尽可能中心
肺脏 10μl 右肺下叶
睾丸 10μl 左睾丸,尽可能中心
卵巢 1μl 左卵巢,如尽可能中心

注射后两天处死动物且收集样品。将样品固定于2%PFA中8小时,在30%蔗糖中固定过夜,且运送以立即包埋于OCT中且切成切片。将切片用DAPI染色(针对细胞核)。用显微镜对DAPI和tdTomato荧光成像。

表14中所列的所有解剖部位均展示tdTomato荧光(图9)。另外,使用荧光显微镜检查tdTomato确认了向肌肉组织的递送(图11)。阴性对照小鼠没有任何具有tdTomato荧光的组织。此结果表明融合体能够在各种解剖部位打开小鼠细胞中的tdTomato荧光,且如果未用融合体治疗小鼠或如果小鼠的基因组中不具有tdTomato,则不会发生这种情况。因此,融合体将活性Cre重组酶体内递送至小鼠细胞的细胞核。

还显示不同施用途径可体内递送融合体至组织。将购自Takara的含有CRE和融合剂VSV-G的融合体(Cre Recombinase Gesicles,Takara产品631449)肌肉内(50μl至右胫骨肌前肌)、腹膜内(50μl至腹膜腔)和皮下(50μl在背部皮肤下)注射至FVB.129S6(B6)-GT(ROSA)26Sortm1(Luc)Kael/J(Jackson Laboratories品系005125)。

通过使用化学脱毛剂将区域脱毛45秒,接着用水冲洗3次而分别准备用于肌肉内、腹膜内和皮下注射的腿部、腹侧和背部皮肤。

在注射后第3天,体内成像系统(Perkin Elmer)用于获得生物发光的全动物图像。在成像前五分钟,小鼠接受以150mg/kg剂量腹膜内注射的生物发光底物(Perkin Elmer)以使荧光素酶可视化。成像系统被校准以补偿所有装置设置。

通过所有三种途径施用均引起发光(图10),表明将活性Cre重组酶成功地体内递送至小鼠细胞。

总之,融合体能够将活性蛋白体内递送至个体的细胞。

实例104:融合体中超声处理介导的核酸装载

此实例描述通过超声处理将核酸有效负载装载至融合体中。超声处理方法公开于例如Lamichhane,TN等人,通过用超声处理将小RNA主动装载至细胞外囊泡中的癌基因敲落(Oncogene Knockdown via Active Loading of Small RNAs into ExtracellularVesicles by Sonication.)《细胞和分子生物工程化(Cell Mol Bioeng)》,(2016)中,其全部内容以引用的方式并入本文中。

通过先前实例中所述的任一种方法来制备融合体。将大约106个融合体与5-20μg核酸混合且在室温下培育30分钟。接着使用以40kHz操作的水浴超声发生器(Brason型号#1510R-DTH)将融合体/核酸混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心5分钟以将含核酸的融合体制成集结粒。去除含有未合并的核酸的上清液且将集结粒再悬浮于磷酸盐缓冲盐水中。在DNA装载之后,将融合体在使用之前保持于冰上。

实例105:融合体中超声处理介导的蛋白质装载

此实例描述通过超声处理将蛋白质有效负载装载至融合体中。超声处理方法公开于例如Lamichhane,TN等人,通过用超声处理将小RNA主动装载至细胞外囊泡中的癌基因敲落《细胞和分子生物工程化》,(2016)中,其全部内容以引用的方式并入本文中。

通过先前实例中所述的任一种方法来制备融合体。将大约106个融合体与5-20μg蛋白质混合且在室温下培育30分钟。接着使用以40kHz操作的水浴超声发生器(Brason型号#1510R-DTH)将融合体/蛋白质混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4C下以16,000g离心5分钟以将含蛋白质的融合体制成集结粒。去除含有未合并的蛋白质的上清液且将集结粒再悬浮于磷酸盐缓冲盐水中。在蛋白质装载之后,将融合体在使用之前保持于冰上。

实例106:融合体中疏水载体介导的核酸装载

此实例描述通过疏水载体将核酸有效负载装载至融合体中。疏水性装载的示例性方法公开于例如Didiot等人,用于亨廷顿蛋白mRNA沉默的外泌体介导的疏水修饰的siRNA的递送(Exosome-mediated Delivery of Hydrophobically Modified siRNA forHuntingtin mRNA Silencing),《分子疗法(Molecular Therapy)》24(10):1836-1847,(2016)中,其全部内容以引用的方式并入本文中。

通过先前实例中所述的任一种方法来制备融合体。RNA分子的3'端结合至生物活性疏水结合物(三乙二醇-胆固醇)。通过在以500rpm振荡的情况下在37℃下培育90分钟,将大致106个融合体(1ml)与10μmol/l的siRNA结合物在PBS中混合。疏水载体介导RNA与融合体膜的结合。在一些实施例中,一些RNA分子被并入融合体的内腔中,且一些存在于融合体的表面上。通过在4℃下在台式超速离心机中使用TLA-110转子以100,000g超速离心1小时,将未装载的融合体与装载有RNA的融合体分离。未装载的融合体保留在上清液中,且装载有RNA的融合体形成集结粒。将装载有RNA的融合体再悬浮于1ml PBS中,且在使用之前保持于冰上。

实例107:加工融合体

此实例描述融合体的加工。通过先前实例中所述的任一种方法产生的融合体可以被进一步加工。

在一些实施例中,融合体首先被均质化,例如通过超声处理。例如,超声处理方案包括使用将微探针振幅设置于8的MSE超声发生器(Instrumentation Associates,N.Y.)进行5秒超声处理。在一些实施例中,此短时间超声处理足以使得融合体的质膜破裂成均匀尺寸的融合体。在这些条件下,细胞器膜不会被破坏且将其通过离心(3,000rpm,15min 4℃)去除。接着如实例16中所述地通过差速离心纯化融合体。

将融合体挤压通过可商购的聚碳酸酯膜(例如购自Sterlitech,Washington)或可商购自Pall Execia,France的不对称陶瓷膜(例如Membralox)是将融合体尺寸减小为相对明确定义的尺寸分布的有效方法。通常,悬浮液循环通过膜一次或多次,直至实现所需融合体尺寸分布。融合体可挤压通过依次更小的孔隙膜(例如400nm、100nm和/或50nm孔隙大小)以实现尺寸的逐渐减小和均匀分布。

在一些实施例中,在融合体生产的任何步骤,但通常在均质化、超声处理和/或挤压步骤之前,可将医药剂(如治疗剂)添加至反应混合物,使得所得融合体囊封医药剂。

实例108:测量融合体和源细胞中的总RNA

此实例描述定量融合体相对于源细胞中的RNA的量的方法。在一个实施例中,融合体将具有与源细胞类似的RNA水平。在此分析中,通过测量总RNA来确定RNA水平。

通过先前实例中所述的任一种方法来制备融合体。如根据融合体和源细胞的蛋白质所测量的相同质量的制剂用于分离总RNA(例如使用试剂盒,如Qiagen RNeasy目录号74104),接着使用标准光谱法测定RNA浓度,以评估RNA的吸光度(例如使用ThermoScientific NanoDrop)。

在一个实施例中,以蛋白质的质量计,融合体中的RNA的浓度将为源细胞的5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、95%。

实例109.产生表达外源融合剂的HEK-293T细胞

此实例描述产生表达外源融合剂的组织培养细胞。将融合剂基因VSV-G(水泡性口炎病毒G蛋白)克隆至pcDNA3.1载体(ThermoFisher)中。接着使用Xfect转染试剂(Takara)将VSV-G构筑体转染至HEK-293T细胞(ATCC,目录号CRL-3216)中。在用于另外的实验之前,将转染的HEK-293T细胞在37℃、5%CO2下在补充有GlutaMAX(GIBCO)、10%胎牛血清(GIBCO)和青霉素/链霉素抗生素(GIBCO)的达尔伯克氏改良伊格尔培养基(DMEM)中培养适当的持续时间。

实例110.通过蛋白质增强的融合去核细胞递送线粒体

产生融合去核细胞,其包含在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-g)的HeLa细胞,且通过表达线粒体靶向的DsRED荧光蛋白(mtDsRED)而蛋白质增强。根据超速离心的标准程序通过Ficoll梯度将表达VSV-G的HeLa细胞去核,以获得去核细胞(例如如实例1中所述)。受体细胞为HeLa Rho0细胞,其通过在扎西他滨(zalcitabine),一种核苷类似物逆转录酶抑制剂中长期(>6周)培养HeLa细胞而产生缺乏线粒体DNA(mtDNA)的细胞。HeLa Rho0细胞的mtDNA不足(如通过qPCR评估)且显示明显不足的线粒体耗氧量(如根据Seahorse细胞外通量分析所测量)。受体HeLa Rho0细胞还通过腺病毒转导2天工程化,以表达线粒体靶向的GFP(mtGFP)。

将受体HeLa Rho0细胞涂铺于6孔培养皿中,且在一小时后将去核的VSV-G HeLa细胞施用至受体细胞。接着将细胞在37℃和5%CO2下培育24小时。接着通过荧光辅助细胞分选使用BD FACS Aria SORP细胞分选仪对细胞进行双阳性(融合)细胞分选。评估对mtGFP和mtDsRED呈双阳性的细胞群体,以分选从去核的VSV-G HeLa细胞接受线粒体捐赠(mtDsRED)的受体HeLa Rho0细胞。mtGFP用488nm激光激发且在513±26nm处捕获发射。mtDsRED用543nm激光激发且在570±26nm处捕获发射。正向和侧向散射门控最初用于捕获细胞尺寸化事件和丢弃小碎屑。对mtGFP和mtDsRED呈双阳性的事件是通过门控于最低水平确定的,对于所述最低水平,每个适当的阴性对照样品显示<1%的对特定荧光标记呈阳性的事件(即未染色和单一mtGFP阳性样品显示<1%对mtDsRED呈阳性的事件)。接着将双阳性事件,以及单阳性mtGFP(无线粒体递送的受体细胞)和单阳性mtDsRED(不与受体细胞融合的供体去核的VSV-G HeLa细胞)事件分选至具有10%FBS和抗生素的DMEM培养基中。对分选的细胞计数且以每孔25,000个细胞(每组6个重复样品)接种于96孔Seahorse板(Agilent)中。将板在37℃和5%CO2下培育24小时。

如下起始耗氧量分析:通过去除生长培养基,用含有25mM葡萄糖和2mM谷氨酰氨(Agilent)的低缓冲DMEM基本培养基代替且在37℃下培育60分钟以使温度和pH达到平衡。接着在XF96细胞外通量分析仪(Agilent)中分析微孔板,以测量紧贴在粘附细胞周围的培养基中的氧和pH的细胞外通量变化。在获得稳态耗氧量和细胞外酸化率之后,将抑制ATP合酶的寡霉素(5μM)和解偶联线粒体的质子离子载体FCCP(羰基氰化物4-(三氟甲氧基)苯腙;2μM)通过试剂递送室依次注入微孔板的每个细胞孔,以获得最大耗氧率的值。最后,注入5μM抗霉素A(线粒体复合物III的抑制剂),以确认呼吸变化主要归因于线粒体呼吸。从其它三个呼吸率减去抗霉素A呼吸率,以确定基础、解偶联(寡霉素耐药性)和最大(FCCP诱导的)线粒体呼吸率。

使用此分析,确定供体VSV-G HeLa细胞显示活跃的基础和最大耗氧率,而不具有递送的靶细胞显示线粒体耗氧的所有三种状态的低速率。通过蛋白质增强的去核的VSV-GHeLa细胞将线粒体递送至受体HeLa Rho0细胞显示线粒体耗氧率返回至接近供体VSV-GHeLa细胞速率(图12)。

实例111:通过囊泡形成和离心产生和分离融合体

此实例描述通过囊泡化和离心来产生和分离融合体。这是分离融合体的方法之一。如下制备融合体。将9.2×106个HEK-293T(ATCC,目录号CRL-3216)在100mm胶原蛋白涂布的培养皿(Corning)中使用Xfect转染试剂(Takara,目录号631317)反向转染,所述转染试剂在7.5mL完全培养基(补充有GlutaMAX(ThermoFisher)、10%胎牛血清(ThermoFisher)和青霉素/链霉素抗生素(ThermoFisher)的达尔伯克氏改良伊格尔培养基(DMEM))中具有10μg含有用于VSVg的开放阅读框架的pcDNA3.1表达质粒和15μg含有用于具有SV40核定位序列的噬菌体P1 Cre重组酶的开放阅读框架的pcDNA3.1表达质粒。在接种后十二小时,吸出培养基且小心地用15mL补充有100μM ATP(Sigma)的新鲜完全培养基替换。接着在转染后48小时收集上清液,通过离心(2000×g,10min)澄清,通过0.45μm PES过滤器(CellTreat)过滤,且以120,000×g超速离心1.5小时。接着将粒化的材料再悬浮于50%1×PBS/50%完全培养基的冰冷混合物中,在最大速度下涡旋两分钟且在-80℃下冷冻直至用于进一步的实验。

实例112:产生和分离巨质膜融合体

此实例描述通过细胞囊泡化和离心的融合体产生、装载和分离。这是可产生、分离融合体且装载有货物的方法之一。

如下制备融合体。将9.2×106个HEK-293T在100mm胶原蛋白涂布的培养皿中使用聚合转染试剂反向转染,所述转染试剂在7.5mL完全培养基(DMEM+10%FBS+1×Pen/Strep)中具有10μg含有用于VSVg的开放阅读框架的pcDNA3.1表达质粒和15μg含有用于SV40核定位序列的噬菌体P1 Cre重组酶的开放阅读框架的pcDNA3.1表达质粒。

为了产生装载有货物的融合体,在转染后24小时,将细胞在洗涤缓冲液(10mMHEPES,pH 7.4、150mM NaCl、2mM CaCl2)中洗涤两次且在形成缓冲液(10mM HEPES,pH 7.4、2mM CaCl2、150mM NaCl、25mM PFA、2mM DTT、125mM甘氨酸)中洗涤一次。接着将细胞在37℃下在形成缓冲液中培育至少6小时。收集含有融合体的上清液,且接着通过以2,000×g离心5分钟将融合体从细胞和细胞碎屑中澄清。最后,融合体通过以17,000×g离心20分钟而浓缩且再悬浮用于实验的所需缓冲液中。为了测试融合体是否可与受体细胞融合且递送其货物,将再悬浮的融合体以所需剂量添加至受体293T LoxP Green/Red开关报告细胞。为了验证囊泡融合和货物递送,使用自动荧光显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-f x-automated-live-cell-imager/)对受体细胞的LoxP重组成像。为了在视场中阳性鉴别RFP阳性细胞,通过首先在DMEM培养基中用Hoechst 33342对细胞染色10分钟来确定每个孔中的总细胞群体。Hoechst 33342通过***至DNA中染色细胞核且因此可用于鉴别单个的细胞。在染色之后,将Hoechst培养基用常规DMEM培养基替换且鉴别RFP+细胞。

使用405nm LED和DAPI滤光立方体对Hoechst染色进行成像。RFP使用523奈米LED和RFP滤光立方体成像。通过首先确定未处理的孔;即,未用任何融合体处理的受体细胞的LED强度和积分时间来获取不同细胞组的图像。设定采集设置,以使得RFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。

用配备有荧光显微镜的Gen 5软件(BioTek)进行RFP阳性孔的分析。使用滚球背景减除算法以10μm宽度(Hoechst 33342)、20μm宽度(RFP)对图像进行预处理。在Hoechst阳性细胞上设置总细胞掩码。Hoechst强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为Hoechst阳性细胞的区域。

在总细胞掩码内,通过对显著高于背景的细胞再次取阈值且将Hoechst(细胞核)掩码扩展到整个细胞区域以包括整个RFP细胞荧光来鉴别RFP阳性细胞。计算每个视场的总数中的RFP阳性细胞的总数。在一个实施例中,相比于未处理的细胞,融合体处理的受体细胞在每个视场中具有更多的RFP+细胞(图13)。

实例113:通过挤压产生融合体

此实例描述通过挤压穿过膜制造融合体。

用TrypleE使表达VSV-G和Cre重组酶的HEK293T细胞胰蛋白酶化、收集、以500×g旋转5分钟且计数。随后将30×106个细胞在37℃下再悬浮于1mL补充有500nM LatrunculinB的含12.5%Ficoll的DMEM培养基中30分钟。为了使细胞去核,将其转移至由以下Ficoll级分(从上到下)组成的不连续Ficoll梯度液:5mL 12.5%Ficoll、6mL 16%Ficoll、10mL18%Ficoll。所有Ficoll梯度级分均在补充有500nM Latrunculin B的DMEM培养基中制得。将梯度液在37℃下在具有Ti-70转子的Beckman SW-40超速离心机上以32,300RPM旋转1小时。在离心后,从12.5%与16%Ficoll层之间的梯度液收集去核的HEK293T细胞且用PBS稀释,且以3,000×g旋转5分钟。接着将去核的细胞再悬浮于1mL PBS中。

简单来说,为了挤出,将融合去核的HEK293T细胞再悬浮至1-5mg/mL蛋白质的密度,如通过PBS中的二喹啉甲酸分析所分析。将细胞用1mL气密注射器吸出且穿过5μm、0.8μm或0.4μm膜1至20次。收集滤液且添加至含有稳定表达loxP:GFP/RFP报告子构筑体的HEK293T细胞的96孔板。在16-24小时后,对板成像且分析RFP的表达(图14)。

实例114:分离从细胞自由释放的融合微囊泡

此实例描述分离从细胞自由释放的融合微囊泡。如下地分离融合微囊泡。将9.2×106个HEK-293T(ATCC,目录号CRL-3216)在100mm胶原蛋白涂布的培养皿(Corning)中使用Xfect转染试剂(Takara,目录号631317)反向转染,所述转染试剂在7.5mL完全培养基(补充有GlutaMAX(ThermoFisher)、10%胎牛血清(ThermoFisher)和青霉素/链霉素抗生素(ThermoFisher)的达尔伯克氏改良伊格尔培养基(DMEM))中具有10μg含有用于VSVg的开放阅读框架的pcDNA3.1表达质粒和15μg含有用于具有SV40核定位序列的噬菌体P1 Cre重组酶的开放阅读框架的pcDNA3.1表达质粒。在接种后十二小时,小心地添加另外7.5mL完全培养基。通过以200×g离心10分钟而使细胞与培养基分离。收集上清液且依序以500×g离心10分钟两次、以2,000×g离心15分钟一次、以10,000×g离心30分钟一次以及以70,000×g离心60分钟一次。在最终离心步骤期间将自由释放的融合体粒化、再悬浮于PBS中且以70,000×g再粒化。将最终集结粒再悬浮于PBS中。

另外参见Wubbolts R等人人类B细胞源性外泌体的蛋白质组学和生化分析:对其功能和多囊体形成的潜在影响(Proteomic and Biochemical Analyses of Human BCell-derived Exosomes:Potential Implications for their Function andMultivesicular Body Formation.)《生物化学杂志》278:10963-10972 2003。

实例115:融合体中缺乏转录活性

此实例描述与用于融合体产生的亲本细胞,例如源细胞相比,融合体中的转录活性的定量。相比于亲本细胞,例如源细胞,融合体中的转录活性可能较低或不存在。

融合体可用作治疗剂递送的底物。可以高效率递送至细胞或局部组织环境的治疗剂(如miRNA、mRNA、蛋白质和/或细胞器)可用于调节在受体组织中通常不活跃或在病理性低或高水平下不活跃的途径。融合体可能无法转录,或融合体的转录活性可能低于其亲本细胞的观察结果可表明核物质的去除已充分发生。

如本文所述地制备融合体。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过使用Click-iT EU成像试剂盒(ThermoFisher),将融合体的转录活性相比于用于融合体产生的亲本细胞,例如源细胞。

简单来说,将对应于60μL标准VSV-G融合体制剂的大致3×106个融合体和1×106个用于产生融合体的亲本细胞在37℃和5%CO2下在1mL完全培养基中一式三份地完全涂铺于含有1mM可荧光标记的炔烃-核苷EU的6孔低附着多孔板中4小时。对于阴性对照,将3×106个融合体在完全培养基中涂铺于6孔低附着多孔板中,但不具有炔烃-核苷EU。在4小时培育后,按照制造商的说明书(ThermoFisher Scientific)处理样品。简单来说,将包括阴性对照的细胞和融合体样品用1×PBS缓冲液洗涤三次且再悬浮于1×PBS缓冲液中,且通过流式细胞仪(Attune,ThermoFisher),使用488nm氩激光激发和530+/-30nm滤光片发射进行分析,如下表中所示:

流式细胞仪设置

染料 Attune激光/滤光片 激光波长 发射滤光片(nm)
AF488 BL1 488 530/30

Attune NxT软件用于采集且FlowJo用于分析。为进行数据采集,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示530+/-30nm发射通道中的事件。在每种情况下,收集细胞或融合体门内的至少10,000个事件。为进行数据分析,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示530+/-30nm发射通道中的事件。阴性对照530+/-30nm发射用于确定直方图上门的放置位置,以使得较少门包括小于1%阳性。使用以上列出的分析标准,亲本细胞展示99.17%±0.20Eu:AF488事件,作为通过在新转录的mRNA转录物中包括Eu的转录活性的替代量度,而融合体展示70.17%±7.60AF488事件(图14B)。AF488的中值荧光强度,且因此测量掺入多少Eu,因此多少新合成的mRNA转录物(相对)对于亲本细胞为9867±3121个事件且对于融合体为1883±366.3个(图14B)。实例表明融合体相对于亲本细胞缺乏转录活性。

实例116:缺乏DNA复制或复制活性

此实例描述与用于融合体产生的亲本细胞,例如源细胞相比,融合体中的DNA复制活性的定量。相比于亲本细胞,例如源细胞,融合体中的DNA复制活性可能较低或不存在。

融合体可用作治疗剂递送的底物。可以高效率递送至细胞或局部组织环境的治疗剂(如miRNA、mRNA、蛋白质和/或细胞器)可用于调节在受体组织中通常不活跃或在病理性低或高水平下不活跃的途径。融合体可能无法进行DNA复制,或融合体的DNA复制活性可能低于其亲本细胞的观察结果可表明核物质的去除已充分发生。

如本文所述地制备融合体。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过使用Click-iT EdU成像试剂盒(ThermoFisher)将融合体的翻译活性相比于用于融合体产生的亲本细胞,例如源细胞。

简单来说,将对应于60μL标准VSV-G融合体制剂的大致3×106个融合体和1×106个用于产生融合体的亲本细胞在37℃和5%CO2下在1mL完全培养基中一式三份地完全涂铺于含有1mM可荧光标记的炔烃-核苷EdU的6孔低附着多孔板中4小时。对于阴性对照,将3×106个融合体在完全培养基中涂铺于6孔低附着多孔板中,但不具有炔烃-核苷EdU。在4小时培育后,按照制造商的说明书(ThermoFisher Scientific)处理样品。简单来说,将包括阴性对照的细胞和融合体样品用1×PBS缓冲液洗涤三次且再悬浮于1×PBS缓冲液中,且通过流式细胞仪(Attune,ThermoFisher),使用638nm激光激发和670+/-14nm滤光片发射进行分析,如下表中所示:

流式细胞仪设置

染料 Attune激光/滤光片 激光波长 发射滤光片(nm)
AF47 RL1 638 670/14

Attune NxT软件用于采集且FlowJo用于分析。为进行数据采集,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示670+/-14nm发射通道中的事件。在每种情况下,收集细胞或融合体门内的至少10,000个事件。为进行数据分析,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示670+/-14nm发射通道中的事件。阴性对照670+/-14nm发射用于确定直方图上门的放置位置,以使得较少门包括小于1%阳性。使用以上列出的分析标准,亲本细胞展示56.17%±8.13Edu:647事件,作为通过在新合成的DNA中包括Edu的翻译活性的替代量度,而融合体展示6.23%±4.65AF488事件(图14C)。AF647的中值荧光强度、Edu掺入的测量和因此新合成的DNA对于亲本细胞为1311±426.2且对于融合体为116.6±40.74(图14C)。实例表明融合体相对于亲本细胞缺乏DNA复制活性。

实例117:具有脂质双层结构的融合体

此实例描述融合体的组合物。在一个实施例中,融合体组合物包含在中心具有内腔的脂质双层结构。不希望受理论束缚,融合体的脂质双层结构促进与靶细胞的融合,且允许融合体装载不同的治疗剂。

如先前实例中所述地通过用VSV-G瞬时转染293F细胞,接着在转染后48小时过滤和超速离心条件培养基来制备融合体。对于每个样品,用Exosome Spin Columns(Invitrogen#4484449)根据制造商的说明书去除小分子量污染物。使用Amicon Ultra0.5mL离心过滤器Ultracel 100K 100,000NMWL单元(Millipore#UFC510024)进行大蛋白质去除、脱盐和缓冲液交换。在PBS中重构融合体。将每个样品的三个holy碳网格(ElectronMicroscopy Services#Q2100CR1.3)辉光放电25秒以使表面亲水。将样品短暂涡旋,且将3μL融合体置于每个网格的顶部上且培育1-2分钟。使用Gatan Cryoplunge3半自动浸入式冷冻仪器根据制造商的说明对融合体进行浸入式冷冻。将冷冻的水合网格装载至FEI TecnaiArctica Cryo-TEM的低温转移容器中。接着将融合体以低剂量搜索模式扫描且在200kV下以23,500×和39,000×放大率成像(图15)。

实例118:检测融合剂表达

此实例描述融合体中的融合剂表达的定量。如本文所述,通过在10cm培养皿中用VSV-G、Cre重组酶和miRFP670瞬时转染HEK293T,接着在转染后48小时过滤和超速离心条件培养基以获得融合体,来制备融合体。阳性对照为未处理的瞬时转染的293T细胞。阴性对照为未转染的293T细胞。

将融合体用RIPA缓冲液溶解且以15,000×g离心10分钟,其后从上清液回收蛋白质。将样品在4-12%Bis-Tris变性SDS-PAGE凝胶上运行且接着转移至PVDF膜。将每个膜在含3%BSA+0.1%Triton X-100的PBS中封闭30分钟。接着将膜与抗VSVG标签(ab1874,Abcam,Cambridge,MA)一级抗体一起在4℃下在封闭溶液中培育过夜,接着在含0.1%Triton X-100的PBS中洗涤三次,每次5分钟。膜接着与HRP结合的二级抗体(#7074P2,CellSignaling Technologies,Danvers,MA)一起在4℃下在封闭溶液中培育4小时。添加HRP底物且通过Alpha Innotech MultiImage3记录化学发光信号(图16)。

实例119:测量融合体的平均尺寸

此实例描述融合体平均尺寸的测量。

如本文所述地通过用VSV-G瞬时转染HEK293T、去核且用Ficoll后续分级分离来制备融合体。使用用于亚微米(Nanosight NS300,Malvern Instruments)和超微米(Zeiss780Inverted Laser Confocal,Zeiss)测量的可商购的系统测量融合体以确定平均尺寸。每个系统均根据制造商的说明与软件一起使用。将融合体和亲本细胞再悬浮于PBS中且用1μM CalceinAM染色至大致1mg蛋白质/mL的最终浓度。融合体和亲本细胞接着在测量之前在PBS中稀释100倍。对于在Nanosight NS300上进行亚微米测量,使用图17A中所示的参数。对于在780倒置共聚焦显微镜上进行超微米测量,使用图17B中所示的参数。

在分离后的8小时内分析所有融合体。<500nm粒子的测量取自NTA且添加至用Zeiss显微镜测量≥500nm粒子,以获得50-20,000nm的完整测量。融合体和亲本细胞的尺寸分布在图17C中示出。对所有粒子的分布取平均值,以获得融合体的平均尺寸,如图17D中所示。预期融合体的尺寸可小于亲本细胞。预期融合体的尺寸可在亲本细胞的约73%内。

实例120:测量融合体的平均尺寸分布

此实例描述测量融合体的尺寸分布。

如本文所述地通过用VSV-G瞬时转染HEK293T、去核且用Ficoll后续分级分离来制备融合体。使用实例30的方法测量融合体以确定尺寸分布,如图18中所示。预期融合体在90%的样品内可具有亲本细胞的尺寸分布变化性的小于约50%、40%、30%、20%、10%、5%或更小。预期在90%的样品内,融合体的尺寸分布变化性可比亲本细胞小58%。

实例121:融合体的平均体积

此实例描述测量融合体的平均体积。改变融合体的尺寸(例如体积)可使其对于不同的货物装载、治疗设计或应用为通用的。

如本文所述地通过用VSV-G瞬时转染HEK293T、去核且用Ficoll后续分级分离来制备融合体。阳性对照为HEK293T细胞。

如实例30中所述的通过NTA和共聚焦显微镜的组合的分析用于确定融合体的尺寸。测量融合体的直径且计算体积,如图19中所示。预期融合体的平均尺寸可大于50nm直径。预期融合体的平均尺寸可为129nm直径。

实例122:测量融合体中的细胞器含量

此实例描述检测融合体中的细胞器。

如本文所述地通过用VSV-G瞬时转染HEK293T细胞、去核且用Ficoll后续分级分离来制备融合体。为了检测内质网(ER)、溶酶体和线粒体,将融合体或HEK293T细胞分别用1μMER染色剂(E34251,Thermo Fisher,Waltham,MA)、50nM溶酶体染色剂(L7528,ThermoFisher Waltham,MA)或100nM线粒体染色剂(M22426,Thermo Fisher Waltham,MA)染色。

将染色的融合体在流式细胞仪(Thermo Fisher,Waltham,MA)上运行且根据下表测量每种染料的荧光强度。通过比较染色的融合体与未染色的融合体(阴性对照)和染色的细胞(阳性对照)的荧光强度来验证细胞器的存在。使用表Y中所示的显微镜设置来进行融合体染色:

表Y:

染色剂 Attune激光/滤光片 激光波长 发射滤光片(nm)
ER-Tracker Green BL1 488 530/30
LysoTracker Red YL1 561 585/16
MitoTracker Deep Red FM RL1 638 670/14

如图20中所示,在去核后4小时,对于内质网(图20A)、线粒体(图20B)和溶酶体(图20C),融合体染色呈阳性。

实例123:比较可溶性与不溶性蛋白质质量

此实例描述定量融合体中的可溶性:不溶性蛋白质质量比。融合体中的可溶性:不溶性蛋白质质量比可在一些情况下与有核细胞类似。

如本文所述地通过用VSV-G瞬时转染HEK293T、去核且用Ficoll后续分级分离来制备融合体。使用标准二喹啉甲酸分析(BCA)(PierceTMBCA蛋白质分析试剂盒,ThermoFischer产品编号23225)测试融合体制剂以确定可溶性:不溶性蛋白质比。通过将制备的融合体或亲本细胞以1×107个细胞或约1mg/mL总融合体的浓度悬浮于PBS中且以1,500×g离心以将细胞制成集结粒,或以16,000×g离心以将融合体制成集结粒来制备可溶性蛋白质样品。以可溶性蛋白质级分形式收集上清液。

接着将融合体或细胞再悬浮于PBS中。此悬浮液代表不溶性蛋白质级分。

使用供应的BSA产生标准曲线,每孔0至15μg BSA(一式两份)。融合体或细胞制剂被稀释,使得测量的量在标准范围内。一式两份地分析融合体制剂且使用平均值。将可溶性蛋白质浓度除以不溶性蛋白质浓度以得到可溶性:不溶性蛋白质比(图21)。

实例124:测量与靶细胞的融合

产生衍生自HEK-293T细胞的融合体,所述细胞在细胞表面上表达工程化的麻疹病毒的血凝素糖蛋白(MvH)和融合蛋白(F)且含有Cre重组酶蛋白,如本文所述。MvH被工程化以消除其天然受体结合,且through识别细胞表面抗原的单链抗体(scFv)提供靶细胞特异性,在此情况下,scFv被设计成靶向CD8,一种用于T细胞受体的共受体。使用对照融合体,其衍生自在表面上表达融合剂VSV-G且含有Cre重组酶蛋白的HEK-293T细胞。靶细胞为HEK-293T细胞,其被工程化以在CMV启动子下表达“Loxp-GFP-stop-Loxp-RFP”盒,且被工程化以过表达共受体CD8a和CD8b。非靶细胞为相同HEK-293T细胞,其表达“Loxp-GFP-stop-Loxp-RFP”盒但没有CD8a/b过表达。将靶受体细胞或非靶受体细胞以30,000个细胞/孔涂铺于黑色的透明底96孔板中,且在37℃和5%CO2下在具有10%胎牛血清的DMEM培养基中培养。在涂铺受体细胞之后四至六小时,将表达Cre重组酶蛋白和MvH+F的融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。将受体细胞用10μg融合体处理且在37℃和5%CO2下培育24小时。

使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。通过在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。使用405nm LED和DAPI滤光立方体对Hoechst成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集靶细胞和非靶细胞孔的图像。

设定采集设置,以使得Hoescht、RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在Hoescht通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行GFP和RFP阳性细胞的分析(https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre的受体细胞)的数目除以GFP阳性细胞(不显示递送的受体细胞)和RFP阳性细胞的总和以定量RFP转化百分比,其描述靶受体细胞和非靶受体细胞群体内的融合体融合的量。对于靶向融合(融合体与靶向受体细胞的融合)的量,将RFP转化百分比值标准化为作为靶受体细胞(即,表达CD8)的受体细胞的百分比,其通过用结合至藻红蛋白(PE)的抗CD8抗体染色而评估且通过流式细胞测量术进行分析。最后,通过从靶细胞融合量减去非靶细胞融合量来确定靶向融合的绝对量(任何<0的值均被视为0)。

通过此分析,当受体细胞为表达“Loxp-GFP-stop-Loxp-RFP”盒的靶HEK-293T细胞时,衍生自在表面上表达工程化的MvH(CD8)+F且含有Cre重组酶蛋白的HEK-293T细胞的融合体显示25.2+/-6.4%的RFP转化百分比,且观察到这些受体细胞中的51.1%为CD8阳性的。根据这些结果,针对靶向融合的标准化RFP转化百分比或靶向融合的量被确定为49.3+/-12.7%。当受体是表达“Loxp-GFP-stop-Loxp-RFP”但不表达CD8的非靶HEK-293T细胞时,相同融合体显示0.5+/-0.1%的RFP转化百分比。基于以上,MvH(CD8)+F融合体的靶向融合的绝对量被确定为48.8%且对照VSV-G融合体的靶向融合的绝对量被确定为0%(图22)。

实例125:递送膜蛋白的体外融合

如本文所述地产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达胎盘细胞-细胞融合蛋白合胞素-1(Syn1)和膜蛋白,人类Ox40配体(hOx40L,CD134的配体)。还产生来自表达hOx40L但不表达Syn1的相同细胞的对照粒子(非融合性融合体),以控制hOx40L向受体细胞的非融合介导的递送。受体细胞为人类***癌细胞(PC-3),将其在用融合体处理之前4-6小时以120,000个细胞/孔涂铺于24孔组织培养板中。将受体细胞在t=0时用40μg Syn1融合体或对照粒子处理且在37℃和5%CO2下培育24小时。

在与融合体或粒子一起培育24小时后,使受体细胞胰蛋白酶化以与板脱离,通过以500g离心5min而粒化,且再悬浮于含4%PFA的PBS中15分钟以固定细胞。在固定后,将细胞在PBS中洗涤两次,接着在室温下在1%牛血清蛋白(于PBS中)中培育30分钟。接着将针对hOx40L且结合至Brilliant Violet 421染料(BV421,BD Biosciences,目录号744881)的一级抗体以0.01μg/μL的浓度添加至细胞且在室温下培育30分钟。接着将细胞在PBS中洗涤三次且最后再悬浮于具有碘化丙锭的PBS中。碘化丙锭通过***至DNA中来染色固定/渗透的细胞的细胞核,并且因此用于鉴别单个细胞相对于小碎屑或融合体/粒子(碘化丙锭阴性)。

接着使用Attune NxT流式细胞仪(Thermo Fisher,Waltham,MA)根据下表Z对细胞分析BV421和碘化丙锭荧光,以确定每个荧光团的荧光强度。

表Z.流式细胞仪设置

染色剂 Attune激光/滤光片 激光波长 发射滤光片(nm)
BV421 VL1 405 450/40
碘化丙锭 YL1 561 585/16

阴性对照使用相同染色程序产生,但不添加一级抗体。Attune NxT采集软件用于采集且FlowJo软件用于分析。将光散射设定为线性增益,且将荧光通道设定为对数标度,在每种条件下分析最少10,000个细胞。首先在正向和侧向散射通道上对细胞事件进行门控以去除小碎屑事件,且接着将碘化丙锭阳性细胞作为“所有细胞”门进行门控(设置碘化丙锭阳性门以使得未用碘化丙锭染色的细胞显示<0.5%阳性细胞)。接着基于“所有细胞”门检查BV421荧光强度,且设置BV421阳性细胞门以使得未进行融合体/粒子处理的PC-3细胞显示<0.5%BV421阳性细胞(参见图23中的黑线门)。接着对每组计算BV421阳性细胞百分比值且用作具有hOx40L递送的细胞%的定量。

通过此分析,衍生自表达Syn1和hOx40L的HEK-293T细胞的融合体显示43.6%百分比的细胞具有向PC-3受体细胞的hOx40L递送。不表达Syn1的对照粒子显示11.4%百分比的细胞具有hOx40L递送。对照粒子所观察到的hOx40L递送的量代表由非融合体介导的递送产生的hOx40L递送的背景水平。因此,为了计算具有融合体介导的hOx40L递送的细胞的百分比,将在对照粒子处理条件下具有hOx40L递送的细胞的百分比从在融合体处理条件下具有hOx40L递送的细胞的百分比中减去。具有融合体介导的hOx40L递送的细胞的百分比为32.2%(图23),其证明了体外融合体介导的膜蛋白递送。

实例126:测量跨细胞膜转运葡萄糖的能力

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白,以获得小粒子融合体,如本文所述。为了测量融合体跨细胞膜转运葡萄糖的能力,对可用于监测活细胞中的葡萄糖摄取的2-NBDG(2-(N-(7-硝基苯并-2-氧杂-1,3-二唑-4-基)氨基)-2-脱氧葡萄糖)荧光葡萄糖类似物的水平定量,以评估跨脂质双层的主动转运。来自Biovision Inc.(目录号K682)的市售的试剂盒用于根据制造商的说明书进行分析。

简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后,通过在台式离心机中以3000g离心5分钟将40μg融合体总蛋白粒化,接着再悬浮于400μL补充有0.5%胎牛血清的DMEM中。这对于每个样品一式两份地进行,且将重复样品中的一个用4μL根皮素(随试剂盒提供),一种抑制葡萄糖摄取的天然酚处理,作为葡萄糖摄取抑制的对照。接着将样品在室温下培育1小时。在培育后,将融合体样品粒化且再悬浮于400μL先前制备的葡萄糖摄取混合液中(关于配方,参见下表A)。将用根皮素预处理的样品再悬浮于具有根皮素的葡萄糖摄取混合液中;将未预处理的样品再悬浮于具有20μL PBS而非根皮素的葡萄糖摄取混合液中。另外,将一个平行组的融合体样品再悬浮于仅具有0.5%FBS的DMEM培养基中,作为流式细胞测量术分析的阴性对照。

表A:葡萄糖摄取混合液配方

试剂 体积(μL)
具有0.5%FBS的DMEM培养基 1880
2-NBDG试剂 20
葡萄糖摄取增强剂 100
任选的:根皮素 20

接着将样品在37℃与5%CO2下培育30分钟。在培育后,将细胞粒化,用1mL的1×分析缓冲液(随试剂盒提供)洗涤一次,再次粒化,且再悬浮于400μL的1×分析缓冲液中。

接着通过流式细胞测量术分析使用Invitrogen Attune NxT声聚焦细胞仪测量样品的2-NBDG吸收。2-NBDG用488nm激光激发,且在513±26nm处捕获发射。正向和侧向散射门控最初用于捕获融合体尺寸化事件和丢弃小碎屑。对2-NBDG呈阳性的事件是通过门控于最低水平确定的,对于所述最低水平,2-NBDG阴性对照样品显示<0.5%的对2-NBDG染色呈阳性的事件。接着评估对2-NBDG荧光呈阳性的门控细胞的2-NBDG的平均荧光强度(F.I.),以计算经过和未经过根皮素处理的融合体的葡萄糖摄取值。

通过此分析,衍生自表达VSV-G和Cre的HEK-293T细胞的融合体在未经过根皮素处理的情况下显示631.0+/-1.4的2-NBDG平均F.I.,且在经过根皮素处理的情况下显示565.5+/-4.9的平均F.I.(图24)。

实例127:测量细胞溶质中的酯酶活性

根据超速离心的标准程序通过Ficoll梯度产生来自C2C12细胞的融合体,以获得小粒子融合体,如本文所述。为了测量融合体的细胞溶质中的酯酶活性,将样品用钙黄绿素AM(BD Pharmigen,目录号564061)染色,钙黄绿素AM是一种荧光素衍生物和非荧光的活体染剂,其被动地穿过活细胞的细胞膜且被胞质酯酶转化为绿色荧光钙黄绿素,所述绿色荧光钙黄绿素被具有完整膜和非活性多药耐药蛋白的细胞保留。

简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后,通过在台式离心机中以3000g离心5分钟将20μg融合体总蛋白粒化,接着再悬浮于400μL补充有0.5%胎牛血清的DMEM中。膜渗透性染料钙黄绿素-AM制备为10mM的二甲亚砜储备溶液和1mM的PBS缓冲液,pH 7.4工作溶液。将VSV-G融合体用DMEM培养基中稀释的1μM钙黄绿素-AM溶液染色。将样品在37℃下在黑暗中培育30分钟,且接着通过离心粒化。在用PBS缓冲液洗涤两次后,将融合体再悬浮于PBS中且通过流式细胞测量术分析。

使用Invitrogen Attune NxT声聚焦细胞仪测量样品的钙黄绿素荧光保留。钙黄绿素AM用488nm激光激发,且在513±26nm处捕获发射。正向和侧向散射门控最初用于捕获融合体尺寸化事件和丢弃小碎屑。对钙黄绿素呈阳性的事件是通过门控于最低水平确定的,对于所述最低水平,钙黄绿素阴性对照样品显示<0.5%的对钙黄绿素染色呈阳性的事件。接着评估对钙黄绿素荧光呈阳性的门控细胞的钙黄绿素的平均荧光强度(F.I.),以计算融合体的细胞溶质中的酯酶活性的值。

通过此分析,衍生自C2C12细胞的融合体显示631.0+/-1.4的酯酶活性(平均钙黄绿素F.I.)(图25)。

实例128:测量融合体中的乙酰胆碱酯酶活性

如本文所述地产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达胎盘细胞-细胞融合蛋白合胞素-1(Syn1)且表达Cre重组酶蛋白。使用FluoroCet定量试剂盒(System Biosciences,目录#FCET96A-1)按照制造商的建议测量乙酰胆碱酯酶活性。

简单来说,通过以120,000g超速离心90分钟将融合体粒化且小心地再悬浮于磷酸盐缓冲盐水(PBS)中。随后,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书定量融合体的总蛋白含量。在对蛋白质浓度进行BCA定量后,将1000ng总融合体蛋白用PBS稀释至60μL的体积,接着添加60μL溶解缓冲液以溶解粒子。在冰上培育30分钟后,样品准备好在FluoroCet分析中运行。

在96孔板的重复孔中,将50μL溶解的融合体样品与50μL缓冲液A的工作储备液和50μL缓冲液B的工作储备液混合。并行地,通过在126μL的1×反应缓冲液中吸移2μL提供的标准液来制备标准曲线。接着将此标准溶液连续稀释5×,以制成由2.0E+08、1.0E+08、5.0E+07、2.5E+07、1.25E+07和6.25E+06外泌体当量的乙酰胆碱酯酶活性组成的六点标准曲线。接着将50μL的每种标准液与50μL缓冲液A的工作储备液和50μL缓冲液B的工作储备液在96孔板的重复孔中混合。将50μL的1×反应缓冲液用作空白。通过轻敲侧面将板混合,接着在室温下在黑暗中培育20分钟。接着立即使用设置于激发:530-570nm和发射:590-600nm的荧光板读取器测量板。在读取前将板摇动30秒。

接着在从空白孔中减去RFU值后,相对于已知外泌体当量的乙酰胆碱酯酶活性标绘相对荧光单位(RFU)。接着计算线性回归线且方程式用于根据测得的RFU值来确定融合体样品的乙酰胆碱酯酶活性(以外泌体当量计)。表B中示出了Syn1融合体的测得的乙酰胆碱酯酶活性:

表B:融合体和对照粒子中的乙酰胆碱酯酶活性

样品 乙酰胆碱酯酶活性(外泌体当量)
Syn1融合体 6.83E+05+/-2.21E+05

实例129:测量代谢活性水平

如本文所述地产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白。为了确定融合体制剂的代谢活性水平,使用提供所有所需试剂的可商购自Sigma(目录号CS0720)的试剂盒评估柠檬酸合酶活性。柠檬酸合酶为三羧酸(TCA)循环内的一种酶,其催化草酰乙酸(OAA)与乙酰辅酶A之间的反应以产生柠檬酸盐。在乙酰辅酶A水解后,会释放具有硫醇基的辅酶A(CoA-SH)。硫醇基与化学试剂5,5-二硫基双-(2-硝基苯甲酸)(DTNB)反应,以形成5-硫基-2-硝基苯甲酸(TNB),其具有可以分光光度法在412nm处测量的黄色产物。

根据制造商的建议进行分析。简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后,通过在台式离心机中以3000g离心5分钟使400μg融合体总蛋白质粒化。通过再次粒化且再悬浮于冰冷的PBS中,将融合体洗涤一次。将融合体再次粒化且去除上清液。将集结粒溶解于具有1×蛋白酶抑制剂的100μL CellLytic M缓冲液中。在通过移液混合后。将溶解的样品在室温下培育15分钟以完成溶解。接着将样品以12,000g离心10分钟且将上清液转移至新微量离心管且储存于-80℃下直至进行后续分析。

为了起始柠檬酸合酶活性分析,将所有分析溶液在使用之前升温至室温。根据下表C将溶解的融合体样品与分析溶液混合:

表C:96孔板中的柠檬酸合酶活性测量的反应流程

Figure BDA0002356542560002471

表C中的体积代表96孔板的单个孔的体积。一式两份地测量样品。将反应的所有组分混合且移液至96孔板的单个孔中。接着在微孔板读取器上分析412nm处的吸光度1.5分钟,以测量基线反应。随后,将10μL的10mM OAA溶液添加至每个孔以起始反应。将板在微孔板读取器中摇动10秒,随后读取412nm处的吸光度1.5分钟,每10秒测量一次。

为了计算柠檬酸合酶活性,对每个反应标绘相对于时间的412nm处的吸光度。对于添加OAA之前(内源活性)和之后(总活性)的图的线性范围计算每分钟的吸光度变化。接着通过从样品的总活性减去内源活性来计算柠檬酸合酶的净活性。接着基于由制造商提供的方程式和常数值,将此值用于计算柠檬酸合酶活性。VSV-G融合体的测量的柠檬酸合酶活性为1.57E-02+/-1.86E-03μmol/μg融合体/min。

实例130:测量呼吸水平

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白(VSV-G),以获得小粒子融合体,如本文所述。通过用Seahorse细胞外通量分析仪(Agilent)测量线粒体耗氧率来确定融合体制剂中的呼吸水平。

简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后通过在台式离心机中以3000g离心5分钟将20μg融合体总蛋白粒化,接着再悬浮(一式四份)于150μL补充有25mM葡萄糖和2mM谷氨酰氨(pH7.4)的XF分析培养基(Agilent目录号103575-100)中。接着将再悬浮的样品添加至96孔Seahorse板(Agilent)的一个孔中。

通过将具有样品的96孔Seahorse板在37℃下培育60分钟以使温度和pH达到平衡来起始耗氧量分析。接着在XF96细胞外通量分析仪(Agilent)中分析微孔板,以测量紧贴在融合体周围的培养基中的氧和pH的细胞外通量变化。在获得稳态耗氧量和细胞外酸化率之后,将抑制ATP合酶的寡霉素(5μM)和解偶联线粒体的质子离子载体FCCP(羰基氰化物4-(三氟甲氧基)苯腙;2μM)通过试剂递送室依次注入微孔板的每个孔,以获得最大耗氧率的值。最后,注入5μM抗霉素A(线粒体复合物III的抑制剂),以确认呼吸变化主要归因于线粒体呼吸。从其它三个呼吸率减去抗霉素A呼吸率,以确定基础、解偶联(寡霉素耐药性)和最大(FCCP诱导的)线粒体呼吸率。

使用此分析,根据下表D确定了供体VSV-G融合体显示基础、解偶联和最大耗氧(呼吸)率。

表D:VSV-G融合体的呼吸率

Figure BDA0002356542560002481

Figure BDA0002356542560002491

实例131:测量融合体的磷脂酰丝氨酸水平

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白,以获得小粒子融合体,如本文所述。为了测量融合体的磷脂酰丝氨酸水平,使用与AlexaFluor 647染料(目录号A23204)结合的可商购的膜联蛋白V根据制造商的说明书进行膜联蛋白V染色。膜联蛋白V是一种细胞蛋白,其可在暴露于质膜的外叶上时结合磷脂酰丝氨酸;因此,读取与样品结合的膜联蛋白V可提供样品中的磷脂酰丝氨酸水平的评估。

简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后,通过在台式离心机中以3000g离心(样品一式三份)5分钟使40μg融合体总蛋白粒化,接着再悬浮于400μL补充有2%胎牛血清的DMEM中。用40μM抗霉素A处理一个样品。接着将样品在37C下培育1小时。在培育之后,接着再次通过离心使样品粒化且再悬浮于100μL膜联蛋白结合缓冲液(ABB;10mM HEPES、140mM NaCl、2.5mM CaCl2,pH 7.4)中。随后,将5μL与Alexa Fluor 647结合的膜联蛋白V添加至每个样品(除了未进行膜联蛋白V染色的阴性对照)。将样品在室温下培育15分钟,接着添加400μLABB。

接着通过流式细胞测量术分析使用Invitrogen Attune NxT声聚焦细胞仪测量样品的膜联蛋白V染色。与Alexa Fluor 647结合的膜联蛋白V用638nm激光激发,且在670±14nm处捕获发射。正向和侧向散射门控最初用于捕获融合体尺寸化事件和丢弃小碎屑。对Alexa Fluor 647(膜联蛋白V)染色呈阳性的事件是通过门控于最低水平确定的,对于所述最低水平,未染色的膜联蛋白V阴性对照样品显示<0.5%的对Alexa Fluor 647染色呈阳性的事件。接着关于总亲本群体的膜联蛋白V阳性事件的百分比(正向/侧向散射门中的融合体尺寸化事件)评估对Alexa Fluor 647染色呈阳性的门控事件,且将此值用作融合体样品中的磷脂酰丝氨酸水平的定量。

通过此分析,衍生自表达VSV-G和Cre的HEK-293T细胞的融合体在未用抗霉素A处理的情况下显示63.3±2.3%的膜联蛋白V阳性融合体%且在用抗霉素A处理的情况下显示67.6±5.7%的膜联蛋白V阳性融合体%。

实例132:测量平均线粒体膜电位

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白,以获得小粒子融合体,如本文所述。为了测量融合体的平均线粒体膜电位水平,将线粒体膜电位敏感的市售染料四甲基若丹明,乙酯,过氯酸盐(TMRE;Abcam,目录号T669)用于评估线粒体膜电位。为了将TMRE荧光强度(FI)标准化为样品中的线粒体的量,将MitoTrackerGreen FM染料(MTG;ThermoFisher,目录号M7514)用于共染色样品,以将TMRE FI标准化为MTG FI且因此标准化为样品中的线粒体的量。另外,羰基氰化物-对三氟甲氧基苯腙(FCCP;Sigma目录号C2920)用于处理一个平行组的样品,以使线粒体膜电位完全去极化,且因此允许基于TMRE FI的减小来以毫伏定量线粒体膜电位。

简单来说,通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。随后,通过在台式离心机中以3000g离心(对于未处理和FCCP处理的重复样品,以样品一式四份)5分钟使40μg融合体总蛋白粒化,接着再悬浮于100μL补充有2%胎牛血清且含有最终浓度分别为30nM和200nM的TMRE和MTG染料的DMEM中。一个平行组的融合体样品保持未染色,作为阴性对照。将样品在37℃下培育45分钟。在培育后,通过离心使样品粒化且再悬浮于400μL含有30nm TMRE的无酚红DMEM培养基中。一组重复样品用20μM FCCP处理5分钟,随后通过流式细胞测量术进行评估。

接着通过流式细胞测量术分析使用Invitrogen Attune NxT声聚焦细胞仪测量样品的膜联蛋白V染色。MTG用488nm激光激发且在530±30nm处捕获发射。TMRE用561nm激光激发且在585±16nm处捕获发射。正向和侧向散射门控最初用于捕获融合体尺寸化事件和丢弃小碎屑。对MTG和TMRE染色呈阳性的事件是通过门控于最低水平确定的,对于所述最低水平,未染色的对照样品显示<0.5%的对MTG或TMRE染色呈阳性的事件。接着评估对MTG和TMRE染色呈阳性的门控事件的MTG和TMRE的平均FI。

基于将TMRE FI值标准化为MTG FI值后的TMRE强度计算膜电位值(以毫伏,mV计)。此TMRE/MTG比值允许将TMRE强度标准化为样品中的线粒体的量。计算未处理和FCCP处理的样品的TMRE/MTG比值,且用于使用修正的能斯特方程式(参见下文)确定以毫伏计的膜电位,所述方程式可基于TMRE荧光确定线粒体膜电位(因为TMRE以能斯特方式积聚于线粒体中)。用下式计算融合体膜电位:(mV)=-61.5*log(FI(未处理)/FI(FCCP处理))。使用此方程式,VSV-G融合体样品的计算的线粒体膜电位为-29.6±1.5毫伏。

实例133:测量个体中的持久性半衰期

此实例描述融合体半衰期的测量。融合体在制备前经历急性转染2小时;其使用本文所述的方法衍生且装载有萤火虫荧光素酶mRNA。

在制备后,通过离心使融合体粒化且将融合体粒子再悬浮于注射用无菌磷酸盐缓冲盐水中。将缺少融合体的缓冲溶液用作阴性对照。

通过肌肉内(IM)施用至胫骨前肌而将融合体递送至9周龄FVB(JacksonLaboratory,001800)小鼠中。以确保内容物持续无菌的方式处理溶液。在将动物置于升温的(35℃)手术台上的情况下,在诱导室(约4%异氟醚,以起效)中进行麻醉且通过鼻锥(约2%异氟醚,以起效)维持。通过对区域脱毛(Nair Hair Remover乳膏持续45秒,接着用70%乙醇清洁所述区域)准备胫骨前肌(TA)的中腹上的皮肤。使用结核菌素注射器将50μL融合体溶液15μg蛋白质/μL,平均值(SEM))肌肉内注射至TA的肌腹中。在完成注射后,移开注射器且向注射部位施加压力。使用与对照相同的方法用PBS处理对侧腿。

在递送后,mRNA荧光素酶在受体细胞质中翻译为荧光素酶蛋白。腹膜内(I.P.)施用D-荧光素(Perkin Elmer,150mg/kg)使得能够通过体内生物发光成像来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后3-35分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的最大生物发光信号。以光子/秒/平方厘米/弧度记录最大辐射率。使用LivingImage Software(Perkin Elmer)中的感兴趣区域(ROI)工具定量整合了区域内的辐射率的总通量且以光子/秒报告。对融合体处理和PBS处理的胫骨前肌组织专门监测相比于阴性对照(阴性对照未穿线的(胸部)和分期)的辐射率测量结果。在注射后1、6、12、24和48小时进行测量以观察萤火虫荧光素酶的存在。

通过在动物的受体组织中进行生物发光成像来检测萤火虫荧光素酶存在的证据,如图26A-26B中所示。

实例134:测量个体的靶向潜力(BiVs-Cre Gesicles)

此实例评估融合体靶向特定身体部位的能力。融合体使用如本文所述的方法衍生且装载有cre重组酶蛋白。

将两个剂量的融合体(1×和3×)递送至Loxp荧光素酶(Jackson Laboratory,005125)小鼠,通过尾静脉静脉内(I.V.)注射。将小鼠置于加热灯(使用250W(红外)加热灯泡)下约5分钟(或直至小鼠开始过度梳理胡须)以扩张尾静脉。将小鼠置于限制器上且用70%乙醇擦拭尾巴以更好地观察静脉。

使用结核菌素注射器,静脉内注射200μL的融合体1×溶液(8.5e8±1.4e8个粒子/μL,平均值(SEM))或3×溶液(2.55e9±1.4e8个粒子/μL,平均值(SEM))。在完成注射后,移开注射器且向注射部位施加压力。

在融合后,CRE蛋白易位至细胞核以进行重组,其引起荧光素酶的组成性表达。治疗后三天,通过对区域脱毛(Nair Hair Remover乳膏持续45秒,接着用70%乙醇清洁所述区域)来准备个体的腹侧区域。接着用通过腹膜内施用的D-荧光素(Perkin Elmer,150mg/kg)处理个体。这使得能够通过体内生物发光成像来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后3-15分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的最大生物发光信号。以光子/秒/平方厘米/弧度记录最大辐射率。使用Living Image Software(PerkinElmer)中的感兴趣区域(ROI)工具定量整合了区域内的辐射率的总通量且以光子/秒报告。

通过在动物的受体组织中进行生物发光成像来检测通过融合体递送蛋白质(Cre重组酶)的证据,如图27A-27B中所示。主要在脾脏和肝脏中可见信号,其在3×组显示最高信号。

在全身成像后,将小鼠颈椎脱臼,且在安乐死的5分钟内收集肝脏、心脏、肺脏、肾脏、小肠、胰脏和脾脏且成像。通过在动物的提取的受体组织中进行生物发光成像来检测通过融合体向肝脏和脾脏递送蛋白质(Cre重组酶)的证据。这可见于图28A-28B中。信号在脾脏中最高且在心脏中最低,其中3×组显示最高显著信号(相比于心脏,p=0.0004)。

实例135:通过独立于溶酶体酸化的途径递送融合体

通常,通过内吞作用来实现复合生物货物进入靶细胞。内吞作用需要货物进入内体,内体成熟为酸化的溶酶体。不利的是,通过内吞作用进入细胞的货物可能会被困在内体或溶酶体中且不能到达细胞质。货物也可能被溶酶体中的酸性条件损坏。一些病毒能够非内吞进入靶细胞;然而,此过程尚未被完全理解。此实例表明病毒融合剂可与病毒的其余部分分离且在缺乏其它病毒蛋白的融合体上赋予非内吞进入。

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达尼帕病毒受体结合G蛋白和融合F蛋白(NivG+F)且表达Cre重组酶蛋白,以获得小粒子融合体,如本文所述。为了证实通过非内吞途径将融合体递送至受体细胞,NivG+F融合体用于处理受体HEK-293T细胞,所述细胞被工程化以在CMV启动子下表达“Loxp-GFP-stop-Loxp-RFP”盒。NivF蛋白为pH非依赖性包膜糖蛋白,已显示其活化和后续融合活性不需要环境酸化(Tamin,2002)。

将受体细胞以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞之后四至六小时,将表达Cre重组酶蛋白的NivG+F融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。首先通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。将受体细胞用10μg融合体处理且在37℃和5%CO2下培育24小时。为了证实通过非内吞途径经由NivG+F融合体递送Cre,将一个平行孔的接受NivG+F融合体处理的受体细胞用内体/溶酶体酸化抑制剂巴弗洛霉素A1(Baf;100nM;Sigma,目录号B1793)共处理。

使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。通过在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。使用405nm LED和DAPI滤光立方体对Hoechst染色进行成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔上确立LED强度和积分时间来采集靶细胞和非靶细胞孔的图像,所述阳性对照孔含有用编码Cre重组酶的腺病毒而非融合体处理的受体细胞。

设定采集设置,以使得Hoescht、RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在Hoescht通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行GFP和RFP阳性细胞的分析(https://www.biotek.com/products/software-robotics-software/gen5-microplate-read er-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre的受体细胞)的数目除以GFP阳性细胞(不显示递送的受体细胞)和RFP阳性细胞的总和以定量RFP转化百分比,其指示融合体与受体细胞的融合量。

通过此分析,衍生自在表面上表达NivG+F且含有Cre重组酶蛋白的HEK-293T细胞的融合体显示通过溶酶体非依赖性途径的显著递送,这与通过非内吞途径的进入一致,如通过即使在用Baf共处理受体细胞以抑制内吞作用介导的摄取时仍由NivG+F融合体显著递送Cre货物来证明(图29)。在此情况下,Baf共处理对货物递送的抑制为23.4%。

实例136:通过涉及溶酶体酸化的途径递送融合体

根据超速离心的标准程序通过Ficoll梯度产生来自HEK-293T细胞的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白,以获得小粒子融合体,如本文所述。为了证实通过内吞途径将融合体递送至受体细胞,VSV-G融合体用于处理受体HEK-293T细胞,所述细胞被工程化以在CMV启动子下表达“Loxp-GFP-stop-Loxp-RFP”盒。VSV-G为pH依赖性包膜糖蛋白,已显示其在晚期内体或溶酶体的低pH环境(pH约6)下被活化(Yao,2003)。将受体细胞以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞之后四至六小时,将表达Cre重组酶蛋白的VSV-G融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。首先通过二喹啉甲酸分析(BCA,ThermoFisher,目录号23225)根据制造商的说明书测量融合体样品的总蛋白含量。将受体细胞用10μg融合体处理且在37℃和5%CO2下培育24小时。为了证实通过内吞途径经由VSV-G融合体递送Cre,将一个平行孔的接受VSV-G融合体处理的受体细胞用内体/溶酶体酸化抑制剂巴弗洛霉素A1(Baf;100nM;Sigma,目录号B1793)共处理。

使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。通过在DMEM培养基中用Hoechst 33342染色细胞10分钟来确定给定孔中的总细胞群体。Hoechst33342通过***至DNA中染色细胞核且因此用于鉴别单个的细胞。使用405nm LED和DAPI滤光立方体对Hoechst染色进行成像。GFP使用465nm LED和GFP滤光立方体成像,而RFP使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔上确立LED强度和积分时间来获得细胞孔的图像,所述阳性对照孔含有用编码Cre重组酶的腺病毒而非融合体处理的受体细胞。

设定采集设置,以使得Hoescht、RFP和GFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在Hoescht通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行GFP和RFP阳性细胞的分析(参见https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre的受体细胞)的数目除以GFP阳性细胞(不显示递送的受体细胞)和RFP阳性细胞的总和以定量RFP转化百分比,其描述融合体与受体细胞的融合量。

通过此分析,衍生自在表面上表达VSV-G且含有Cre重组酶蛋白的HEK-293T细胞的融合体显示通过内吞途径的显著递送,如通过在用Baf共处理受体细胞以抑制内吞作用介导的摄取时由VSV-G融合体显著抑制Cre货物递送来证明(图30)。在此情况下,Baf共处理对货物递送的抑制为95.7%。

实例137:细胞器的递送

产生包含在细胞表面上表达胎盘细胞-细胞融合蛋白合胞素-1(Syn1)且表达线粒体靶向的DsRED荧光蛋白(mtDsRED)的HeLa细胞的融合体。受体细胞为HeLa Rho0细胞,其通过在扎西他滨(zalcitabine),一种核苷类似物逆转录酶抑制剂中长期(>6周)培养HeLa细胞而产生缺乏线粒体DNA(mtDNA)的细胞。HeLa Rho0细胞的mtDNA不足(如通过qPCR评估)且显示明显不足的线粒体耗氧量(如根据Seahorse细胞外通量分析所测量)。受体HeLa Rho0细胞还通过腺病毒转导2天工程化,以表达线粒体靶向的GFP(mtGFP)。

将受体HeLa Rho0细胞涂铺于6孔培养皿中,且在一小时后将Syn1 HeLa细胞融合体施用至受体细胞。接着将细胞在37℃和5%CO2下培育24小时。接着通过荧光辅助细胞分选使用BD FACS Aria SORP细胞分选仪对细胞进行双阳性(融合)细胞分选。评估对mtGFP和mtDsRED呈双阳性的细胞群体,以分选从Syn1 HeLa细胞融合体接受线粒体捐赠(mtDsRED)的受体HeLa Rho0细胞。mtGFP用488nm激光激发且在513±26nm处捕获发射。mtDsRED用543nm激光激发且在570±26nm处捕获发射。正向和侧向散射门控最初用于捕获细胞尺寸化事件和丢弃小碎屑。对mtGFP和mtDsRED呈双阳性的事件是通过门控于最低水平确定的,对于所述最低水平,每个适当的阴性对照样品显示小于1%的对特定荧光标记呈阳性的事件(即未染色和单一mtGFP阳性样品显示小于1%对mtDsRED呈阳性的事件)。接着将双阳性事件,以及单阳性mtGFP(无融合体递送的受体细胞)和单阳性mtDsRED(不与受体细胞融合的供体融合体)事件分选至具有10%FBS和抗生素的DMEM培养基中。对分选的细胞计数且以每孔25,000个细胞(每组6个重复样品)接种于96孔Seahorse板(Agilent)中。将板在37℃和5%CO2下培育24小时。

如下起始耗氧量分析:通过去除生长培养基,用含有25mM葡萄糖和2mM谷氨酰氨(Agilent)的低缓冲DMEM基本培养基代替且在37℃下培育60分钟以使温度和pH达到平衡。接着在XF96细胞外通量分析仪(Agilent)中分析微孔板,以测量紧贴在粘附细胞周围的培养基中的氧和pH的细胞外通量变化。在获得稳态耗氧量和细胞外酸化率之后,将抑制ATP合酶的寡霉素(5μM)和解偶联线粒体的质子离子载体FCCP(羰基氰化物4-(三氟甲氧基)苯腙;2μM)通过试剂递送室依次注入微孔板的每个细胞孔,以获得最大耗氧率的值。最后,注入5μM抗霉素A(线粒体复合物III的抑制剂),以确认呼吸变化主要归因于线粒体呼吸。从其它三个呼吸率减去抗霉素A呼吸率,以确定基础、解偶联(寡霉素耐药性)和最大(FCCP诱导的)线粒体呼吸率。

使用此分析,确定供体Syn1 HeLa细胞显示活跃的基础和最大耗氧率,而不具有融合体递送的受体细胞显示线粒体耗氧的所有三种状态的低速率。通过Syn1 HeLa细胞融合体将线粒体递送至受体HeLa Rho0细胞显示线粒体耗氧率返回至接近供体Syn1HeLa细胞速率(图31)。

实例138:体外递送DNA

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过超声处理将有效负载装载至VSV-G融合体中,如Lamichhane,TN等人,通过超声处理经由小RNA主动装载至细胞外囊泡中的癌基因基因敲落(Oncogene Knockdown via Active Loading ofSmall RNAs into Extracellular Vesicles by Sonication.)《细胞和分子生物工程化》,(2016)中所概述。在此实验中,核酸有效负载为编码具有SV40核定位序列的噬菌体P1 Cre重组酶的质粒DNA(ThermoFisher)。接着将装载有DNA的融合体用于处理和显示向受体HEK-293T细胞的有效负载递送,所述细胞被工程化以在CMV启动子的控制下表达“LoxP-GFP-stop-LoxP-RFP”盒。

简单来说,将对应于80μg标准VSV-G融合体制剂的大致406个融合体或对照粒子(非融合性融合体)与140μg DNA混合且在室温下培育30分钟。接着使用在40kHz下操作的水浴超声发生器(Branson型号1510R-DTH)将融合体(或对照粒子)/核酸混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心5分钟以将含核酸的融合体制成集结粒。去除含有未合并的核酸的上清液且将集结粒再悬浮于30μL磷酸盐缓冲盐水中。在DNA装载后,将装载的融合体/对照粒子在使用前保持于冰上。

将工程化以表达“LoxP-GFP-stop-LoxP-RFP”盒的受体HEK-293T细胞在完全培养基中以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后二十四小时,将装载有DNA的融合体施用至LoxP-GFP-stop-LoxP-RFP HEK-293T细胞。将受体细胞用8μL装载有DNA的融合体或8μL装载有DNA的对照粒子(非融合性融合体)处理且在37℃和5%CO2下培育24小时。二十四小时后,将细胞板与在完全培养基中稀释的1μg/mL Hoechst 33342一起在37℃和5%CO2下培育30分钟,随后使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-f x-automated-live-cell-imager/)成像。受体细胞的Hoechst荧光使用405nm LED和BFP滤光立方体成像。受体细胞的GFP荧光使用488nm LED和GFP滤光立方体成像。受体细胞的RFP荧光使用523nm LED和RFP滤光立方体成像。通过首先在含有用1.25μL Cre重组酶gesicles(Takara,目录号631449)处理的受体细胞的阳性对照孔上确立LED强度和积分时间来采集孔中的细胞的图像。

设定采集设置,以使得RFP、GFP和RFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行RFP阳性细胞的分析(https://www.biotek.com/products/software-robotics-software/gen5-microplate-read er-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre DNA的受体细胞)的数目除以GFP阳性细胞的总和(总受体细胞),以定量接受Cre DNA递送的细胞的百分比,其描述接受通过超声处理装载至融合体中的Cre DNA有效负载的受体细胞的量。

通过此分析,装载有Cre DNA的融合体显示可观察水平的Cre DNA递送,对应于总GFP阳性受体细胞中的10.7±3.3%RFP阳性细胞(图32)。未处理的受体细胞或仅用融合体处理的细胞,或装载有DNA的对照粒子不显示任何明显的RFP阳性细胞。

实例139:体外递送mRNA

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过超声处理将有效负载装载至VSV-G融合体中,如Lamichhane,TN等人,通过超声处理经由小RNA主动装载至细胞外囊泡中的癌基因基因敲落《细胞和分子生物工程化》,(2016)中所概述。在此实验中,核酸有效负载为编码具有SV40核定位序列的噬菌体P1 Cre重组酶的体外转录的信使RNA(TriLink,目录号L-7211)。接着将装载有mRNA的融合体用于处理和显示向受体HEK-293T细胞的有效负载递送,所述细胞被工程化以在CMV启动子的控制下表达“LoxP-GFP-stop-LoxP-RFP”盒。

简单来说,将对应于20μL标准VSV-G融合体制剂的大致106个融合体或对照粒子(非融合性融合体)与10μg mRNA混合且在室温下培育30分钟。接着使用在40kHz下操作的水浴超声发生器(Brason型号1510R-DTH)将融合体(或对照粒子)/核酸混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心5分钟以将含核酸的融合体制成集结粒。去除含有未合并的核酸的上清液且将集结粒再悬浮于30μL磷酸盐缓冲盐水中。在mRNA装载后,将装载的融合体/对照粒子在使用前保持于冰上。

将工程化以表达“LoxP-GFP-stop-LoxP-RFP”盒的受体HEK-293T细胞在完全培养基中以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后二十四小时,将装载有mRNA的融合体施用至LoxP-GFP-stop-LoxP-RFP HEK-293T细胞。将受体细胞用8μL装载有mRNA的融合体或8μL装载有mRNA的对照粒子(非融合性融合体)处理且在37℃和5%CO2下培育24小时。二十四小时后,将细胞板与在完全培养基中稀释的1μg/mL Hoechst 33342一起在37℃和5%CO2下培育30分钟,随后使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-f x-automated-live-cell-imager/)成像。受体细胞的Hoechst荧光使用405nm LED和BFP滤光立方体成像。受体细胞的GFP荧光使用488nm LED和GFP滤光立方体成像。受体细胞的RFP荧光使用523nm LED和RFP滤光立方体成像。通过首先在含有用Cre重组酶gesicles(Takara,目录号631449)处理的受体细胞的阳性对照孔上确立LED强度和积分时间来采集孔中的细胞的图像。

设定采集设置,以使得RFP、GFP和RFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行RFP阳性细胞的分析(https://www.biotek.com/products/software-robotics-software/gen5-microplate-read er-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre mRNA的受体细胞)的数目除以GFP阳性细胞的总和(总受体细胞),以定量接受Cre mRNA递送的细胞的百分比,其描述接受通过超声处理装载至融合体中的Cre mRNA有效负载的受体细胞的量。

通过此分析,装载有Cre mRNA的融合体显示可观察水平的Cre mRNA递送,对应于总GFP阳性受体细胞中的52.8±7.8%RFP阳性细胞(图96)。用单独的miRFP670 DNA、单独的融合体或单独的超声处理的融合体处理的受体细胞不显示任何明显的miRFP670阳性细胞。

实例140:体内递送mRNA

此实例描述通过融合体将信使RNA(mRNA)体内递送至细胞。将mRNA体内递送至细胞使得在受体细胞内表达蛋白质。此递送方法用于引入不存在的蛋白质,这将允许loxp位点的裂解和非内源分子的后续表达。融合体在制备前经历急性转染2小时;其使用如本文所述的方法衍生且装载有萤火虫荧光素酶mRNA。

在制备后,通过离心使融合体粒化且将融合体粒子再悬浮于注射用无菌磷酸盐缓冲盐水中。将缺少融合体的缓冲溶液用作阴性对照。

通过肌肉内(IM)施用至胫骨前肌而将融合体递送至9周龄FVB(JacksonLaboratory,001800)小鼠中。以确保内容物持续无菌的方式处理溶液。在将动物置于升温的(35℃)手术台上的情况下,在诱导室(约4%异氟醚,以起效)中进行麻醉且通过鼻锥(约2%异氟醚,以起效)维持。通过对区域脱毛(Nair Hair Remover乳膏持续45秒,接着用70%乙醇清洁所述区域)准备胫骨前肌(TA)的中腹上的皮肤。使用结核菌素注射器,将50μL融合体溶液15μg蛋白质/μL,平均值(SEM))肌肉内注射至TA的肌腹中。在完成注射后,移开注射器且向注射部位施加压力。使用与对照相同的方法用PBS处理对侧腿。

在递送后,mRNA荧光素酶在受体细胞质中翻译为荧光素酶蛋白。腹膜内(I.P.)施用D-荧光素(Perkin Elmer,150mg/kg)使得能够通过体内生物发光成像来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后3-35分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的最大生物发光信号。以光子/秒/平方厘米/弧度记录最大辐射率。使用LivingImage Software(Perkin Elmer)中的感兴趣区域(ROI)工具定量整合了区域内的辐射率的总通量且以光子/秒报告。对融合体处理和PBS处理的胫骨前肌组织专门监测相比于阴性对照(阴性对照未穿线的(胸部)和分期)的辐射率测量结果。在注射后1、6、12、24和48小时进行测量以观察萤火虫荧光素酶的存在。

通过在动物的受体组织中进行生物发光成像来检测萤火虫荧光素酶存在的证据,如图15A-15B中所示。(a)FVB小鼠的经融合体(右腿)治疗相对于经PBS(左腿)治疗的腹侧图像和发光信号。左侧为图像和发光信号的覆盖图,且右侧仅为发光信号。(b)融合体治疗的TA(黑色正方形)、PBS治疗的TA(空心圆圈)、小鼠背景(黑色六边形)和分期背景(空心六边形)的总通量信号;y刻度为log10刻度。融合体治疗的腿在治疗后1(p<0.0001)、6(p<0.01)和12(p<0.01)小时处具有显著更大的信号。

实例141:体外递送蛋白质

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过超声处理将有效负载装载至VSV-G融合体中,如Lamichhane,TN等人,通过超声处理经由小RNA主动装载至细胞外囊泡中的癌基因基因敲落《细胞和分子生物工程化》,(2016)中所概述。在此实验中,有效负载为具有SV40核定位序列重组蛋白的噬菌体P1 Cre重组酶(NEB,目录号M0298M)。接着将装载有蛋白质的融合体用于处理和显示向受体HEK-293T细胞的有效负载递送,所述细胞被工程化以在CMV启动子的控制下表达“LoxP-GFP-stop-LoxP-RFP”盒。

简单来说,将对应于20μL标准VSV-G融合体制剂的大致106个融合体或对照粒子(非融合性融合体)与5μL蛋白质(NEB#M0298M)混合且在室温下培育30分钟。接着使用在40kHz下操作的水浴超声发生器(Brason型号1510R-DTH)将融合体(或对照粒子)/蛋白质混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心5分钟以将含核酸的融合体制成集结粒。去除含有未合并的蛋白质的上清液且将集结粒再悬浮于30μL磷酸盐缓冲盐水中。在蛋白质装载后,将装载的融合体/对照粒子在使用前保持于冰上

将工程化以表达“LoxP-GFP-stop-LoxP-RFP”盒的受体HEK-293T细胞在完全培养基中以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后二十四小时,将装载有蛋白质的融合体施用至LoxP-GFP-stop-LoxP-RFP HEK-293T细胞。将受体细胞用8μL装载有蛋白质的融合体或8μL装载有蛋白质的对照粒子(非融合性融合体)处理且在37℃和5%CO2下培育24小时。二十四小时后,将细胞板与在完全培养基中稀释的1μg/mL Hoechst33342一起在37℃和5%CO2下培育30分钟,随后使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-f x-automated-live-cell-imager/)成像。受体细胞的Hoechst荧光使用405nm LED和BFP滤光立方体成像。受体细胞的GFP荧光使用488nm LED和GFP滤光立方体成像。受体细胞的RFP荧光使用523nmLED和RFP滤光立方体成像。通过首先在含有用Cre重组酶gesicles(Takara,目录号631449)处理的受体细胞的阳性对照孔上确立LED强度和积分时间来采集孔中的细胞的图像。

设定采集设置,以使得RFP、GFP和RFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行RFP阳性细胞的分析(参见https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre蛋白质的受体细胞)的数目除以GFP阳性细胞的总和(总受体细胞),以定量接受Cre蛋白质递送的细胞的%,其描述接受通过超声处理装载至融合体中的Cre蛋白质有效负载的受体细胞的量。

通过此分析,装载有Cre蛋白质的融合体显示统计显著水平的Cre蛋白质递送,对应于总GFP阳性受体细胞中的27.4±6.8%RFP阳性细胞(图35)。未处理的受体细胞或仅用融合体处理的细胞,或装载有蛋白质的对照粒子不显示任何明显的RFP阳性细胞。

实例142:体内递送蛋白质(BiVs-Cre Gesicles)

此实例描述通过融合体将治疗剂递送至肌肉。融合体使用如本文所述的方法衍生且装载有CRE重组酶蛋白。

通过肌肉内(IM)施用至胫骨前肌而将融合体递送至Loxp荧光素酶(JacksonLaboratory,005125)小鼠中。以确保内容物持续无菌的方式处理溶液。在将动物置于升温的(35℃)手术台上的情况下,在诱导室(约4%异氟醚,以起效)中诱导麻醉且通过鼻锥(约2%异氟醚,以起效)维持。通过对区域脱毛(Nair Hair Remover乳膏持续45秒,接着用70%乙醇清洁所述区域)准备胫骨前肌(TA)的中腹上的皮肤。使用结核菌素注射器将50μL融合体溶液(8.5e8±1.4e8个粒子/μL,平均值(SEM))肌肉内注射至TA的肌腹中。在完成注射后,移开注射器且向注射部位施加压力。未治疗对侧腿。

在融合后,CRE蛋白易位至细胞核以进行重组,其引起荧光素酶的组成性表达。腹膜内施用D-荧光素(Perkin Elmer,150mg/kg)使得能够通过体内生物发光成像来检测荧光素酶表达。将动物置于体内生物发光成像室(Perkin Elmer)中,所述室装有锥形麻醉器(异氟醚)以防止动物运动。在注射后3-35分钟之间进行光子收集,以观察由D-荧光素药物动力学清除所致的最大生物发光信号。以光子/秒/平方厘米/弧度记录最大辐射率。使用LivingImage Software(Perkin Elmer)中的感兴趣区域(ROI)工具定量整合了区域内的辐射率的总通量且以光子/秒报告。对融合体处理的胫骨前肌组织专门监测相比于阴性对照(阴性对照未穿线的(胸部)、对侧后肢和分期)的辐射率测量结果。在注射后第14天进行测量以观察萤火虫荧光素酶的存在。

通过在动物的受体组织中进行生物发光成像来检测通过融合体递送蛋白质(Cre重组酶)的证据,如图36A-36B中所示。

实例143:融合体中超声处理介导的核酸装载

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白。接着通过超声处理将核酸有效负载装载至VSV-G融合体中,如Lamichhane,TN等人,通过超声处理经由小RNA主动装载至细胞外囊泡中的癌基因基因敲落《细胞和分子生物工程化》,(2016)中所概述。在此实验中,核酸有效负载为编码荧光蛋白miRFP670的DNA质粒。装载有核酸的融合体接着用于处理和显示向受体HEK-293T细胞的有效负载递送,所述细胞被工程化以在CMV启动子下表达“Loxp-BFP-stop-Loxp-Clover”盒。

简单来说,将对应于50μL标准VSV-G融合体制剂的大致106个融合体与10μg核酸混合且在室温下培育30分钟。接着使用以40kHz操作的水浴超声发生器(Brason型号#1510R-DTH)将融合体/核酸混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心5分钟以将含核酸的融合体制成集结粒。去除含有未合并的核酸的上清液且将集结粒再悬浮于磷酸盐缓冲盐水中。在DNA装载之后,将装载的融合体在使用之前保持于冰上。

将工程化以表达“Loxp-BFP-stop-Loxp-Clover”盒的受体HEK-293T细胞以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后四至六小时,将装载有DNA的融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。将受体细胞用4μL装载有DNA的融合体处理且在37℃和5%CO2下培育48小时。使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞板进行成像。受体细胞的BFP荧光使用405nm LED和BFP滤光立方体成像。受体细胞的Clover荧光使用465nm LED和GFP滤光立方体成像,而miRFP670使用623nm LED和Cy5滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集细胞孔的图像。

设定采集设置,以使得BFP、Clover和miRFP670强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用Clover和miRFP670通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行miRFP670阳性细胞的分析(参见https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。BFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为BFP阳性细胞的区域。将相同分析步骤应用于Clover和miRFP670通道。接着将miRFP670阳性细胞(接受miRFP670 DNA质粒的受体细胞)的数目除以BFP阳性细胞的总和(总受体细胞),以定量miRFP670 DNA递送百分比,其描述接受通过超声处理装载至融合体中的miRFP670有效负载的受体细胞的量。

通过此分析,装载有miRFP670 DNA的融合体显示可观察水平的miRFP670递送,对应于总BFP阳性受体细胞中的2.9±0.4%miRFP670阳性细胞(图37)。用单独的miRFP670DNA、单独的融合体或单独的超声处理的融合体处理的受体细胞不显示任何明显的miRFP670阳性细胞(定义为<0.5%)。

实例144:融合体中超声处理介导的蛋白质装载

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)且表达Cre重组酶蛋白。接着通过超声处理将蛋白质有效负载装载至VSV-G融合体中,如Lamichhane,TN等人,通过超声处理经由小RNA主动装载至细胞外囊泡中的癌基因基因敲落《细胞和分子生物工程化》,(2016)中所概述。在此实验中,蛋白质有效负载为与荧光染料Alexa Fluor647(BSA-AF647;ThermoFisher目录号A34785)结合的牛血清白蛋白。装载有蛋白质的融合体接着用于处理和显示向受体HEK-293T细胞的有效负载递送,所述细胞被工程化以在CMV启动子下表达“Loxp-BFP-stop-Loxp-Clover”盒。

简单来说,将对应于50μL标准VSV-G融合体制剂的大致106个融合体与10μg BSA-AF647混合且在室温下培育30分钟。接着使用以40kHz操作的水浴超声发生器(Brason型号#1510R-DTH)将融合体/蛋白质混合物在室温下超声处理30秒。接着将混合物置于冰上一分钟,接着以40kHz进行第二轮超声处理30秒。接着将混合物在4℃下以16,000g离心以5分钟将含BSA-AF647的融合体制成集结粒。去除含有未合并的蛋白质的上清液且将集结粒再悬浮于磷酸盐缓冲盐水中。在蛋白质装载之后,将装载的融合体在使用之前保持于冰上。

将工程化以表达“Loxp-BFP-stop-Loxp-Clover”盒的受体HEK-293T细胞以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后四至六小时,将装载有BSA-AF647的融合体施用至DMEM培养基中的靶受体细胞或非靶受体细胞。将受体细胞用4μL装载有BSA-AF647的融合体处理且在37℃和5%CO2下培育72小时。使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-f x-automated-live-cell-imager/)对细胞板进行成像。受体细胞的BFP荧光使用405nmLED和BFP滤光立方体成像。受体细胞的Clover荧光使用465nm LED和GFP滤光立方体成像,而BSA-AF647使用623nm LED和Cy5滤光立方体成像。通过首先在阳性对照孔;即,用编码Cre重组酶的腺病毒而非融合体处理的受体细胞上确立LED强度和积分时间来采集细胞孔的图像。

设定采集设置,以使得BFP、Clover和BSA-AF647强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用Clover和BSA-AF647通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行BSA-AF647阳性细胞的分析(参见https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。BFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为BFP阳性细胞的区域。将相同分析步骤应用于Clover和BSA-AF647通道。接着将BSA-AF647阳性细胞(接受BSA-AF647蛋白的受体细胞)的数目除以BFP阳性细胞的总和(总受体细胞),以定量BSA-AF647递送百分比,其描述接受通过超声处理装载至融合体中的BSA-AF647蛋白有效负载的受体细胞的量。

通过此分析,装载有BSA-AF647的融合体显示可观察水平的BSA-AF647递送,对应于总BFP阳性受体细胞中的43.2±0.2%BSA-AF647阳性细胞(图38)。用单独的BSA-AF647蛋白、单独的融合体或单独的超声处理的融合体处理的受体细胞不显示任何明显的BSA-AF647阳性细胞(定义为小于5%)。

实例145:产生和分离融合体影

此实例描述通过低渗处理和离心来产生和分离融合体影。这是可产生融合体的方法之一。

融合体影由表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)的HEK-293T细胞产生,如本文所述。产生融合体影且通过荧光纳米粒子跟踪分析(fNTA)进行分析。

如下制备融合体。将9.2×106个HEK-293T在100mm胶原蛋白涂布的培养皿中使用聚合转染试剂反向转染,所述转染试剂在7.5mL完全培养基(DMEM+10%FBS+1×Pen/Strep)中具有10μg含有用于VSVg的开放阅读框架的pcDNA3.1表达质粒和15μg pcDNA3.1空表达质粒。为了产生融合体影,在转染后24小时,将细胞用磷酸盐缓冲盐水(PBS)洗涤,用TryPLE解离,以500×g离心5分钟且再悬浮于培养基中。将1×107个细胞再悬浮于7mL PBS中且通过以500×g离心5分钟粒化。将细胞再悬浮于冷TM缓冲液(10mM Tris、1.6mM MgCl2,pH 7.4)中且以27%振幅超声处理5秒(ColeParmer目录号CPX130)。超声处理后,立即将含有蔗糖(60%w/v)的TM缓冲液以0.25M蔗糖的最终浓度添加至溶液。接着将溶液在6,000×g、4℃下离心15分钟。丢弃上清液且将集结粒在0.25M蔗糖TM缓冲液,pH 7.4中洗涤两次。接着将集结粒再悬浮于0.25M蔗糖TM缓冲液,pH 7.4中且接着将再悬浮的集结粒以27%振幅超声处理5秒(ColeParmer目录号CPX130)。接着将溶液在6,000×g、4℃下离心15分钟。丢弃上清液且将集结粒在0.25M蔗糖TM缓冲液,pH 7.4中洗涤两次。接着将集结粒再悬浮于0.25M蔗糖TM缓冲液,pH 7.4中且接着将再悬浮的集结粒以27%振幅超声处理2分钟(ColeParmer目录号CPX130)。接着将溶液在800×g、4℃下离心15分钟且接着通过0.45μm针筒过滤器过滤。

最后,为了浓缩物融合体影,接着将溶液在150,000×g、4℃下超离心45分钟且将含有融合体影的集结粒再悬浮于PBS中。为了通过fNTA分析融合体影组成,将融合体影与CellMask Orange(ThermoFisher)一起1:1培育且接着以1:1000稀释,随后装载至***中且按照制造商说明书进行分析。融合体影的尺寸分布在图39中示出。通过从表达VSV-G的HEK-293T细胞制备影而成功地产生融合体。

实例146:融合体中缺乏翻译活性

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着通过使用Click-iT EdU成像试剂盒(ThermoFisher)将融合体的翻译活性相比于用于融合体产生的亲本细胞,例如源细胞。

简单来说,将对应于60μL标准VSV-G融合体制剂的大致3×106个融合体和1×106个用于产生融合体的亲本细胞在37℃和5%CO2下在1mL完全培养基中一式三份地完全涂铺于含有1mM可荧光标记的炔烃-核苷EdU的6孔低附着多孔板中4小时。对于阴性对照,将3×106个融合体在完全培养基中涂铺于6孔低附着多孔板中,但不具有炔烃-核苷EdU。在4小时培育后,按照制造商的说明书(ThermoFisher Scientific)处理样品。简单来说,将包括阴性对照的细胞和融合体样品用1×PBS缓冲液洗涤三次且再悬浮于1×PBS缓冲液中,且通过流式细胞仪(Attune,ThermoFisher),使用638nm激光激发和670+/-14nm滤光片发射进行分析(表M)。Attune NxT软件用于采集且FlowJo用于分析。为进行数据采集,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示670+/-14nm发射通道中的事件。在每种情况下,收集细胞或融合体门内的至少10,000个事件。

为进行数据分析,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示670+/-14nm发射通道中的事件。阴性对照670+/-14nm发射用于确定直方图上门的放置位置,以使得门包括小于1%阳性。使用以上列出的分析标准,亲本细胞展示56.17%±8.13Edu:647事件,作为通过在新合成的DNA中包括Edu的翻译活性的替代量度,而融合体展示6.23%±4.65AF488事件(图40,左图)。AF647的中值荧光强度是Edu掺入的量度,并且因此是新合成的DNA的相对量度,对于亲本细胞为1311±426.2个事件且对于融合体为116.6±40.74个(图40,右图)。这表明融合体相对于亲本细胞缺乏翻译活性。

表M:流式细胞仪设置

染料 Attune激光/滤光片 激光波长 发射滤光片(nm)
AF47 RL1 638 670/14

实例147:针对运动性测量使肌动蛋白聚合的能力

如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。对照粒子(非融合性融合体)产生自经pcDNA3.1空载体反向瞬时转染的HEK-293T细胞。接着使用若丹明鬼笔环肽-流式细胞测量术分析和微管蛋白ELISA分析融合体和亲本细胞聚合肌动蛋白(随时间推移)的能力。简单来说,将对应于60μL标准VSV-G融合体制剂的大致1×106个融合体和用于产生融合体的1×105个亲本细胞在1mL完全培养基中完全涂铺于96孔低附着多孔板中且在37℃和5%CO2下培育。在涂铺后3小时、5小时和24小时定期获取样品。将样品以21,000×g离心10分钟,再悬浮于200μL含4%(v/v)PFA的磷酸盐缓冲盐水中10分钟,用1mL磷酸盐缓冲盐水洗涤,以21,000×g离心10分钟,再次洗涤且储存于4℃下直至进一步使用。

对于若丹明-鬼笔环肽染色,将样品以21,000×g离心10分钟,且在100μL含0.1%(v/v)Triton X-100的磷酸盐缓冲盐水中培育20分钟。在20分钟培育后,将另外100μL含有165μM若丹明-鬼笔环肽的含0.1%(v/v)Triton X-100的磷酸盐缓冲盐水添加至样品且进行吸管混合,接收阴性对照和另外100μL 100μL仅含0.1%(v/v)Triton X-100的磷酸盐缓冲盐水。将样品培育45分钟,随后用1mL磷酸盐缓冲盐水洗涤,以21,000×g离心10分钟,再次洗涤且再悬浮于300μL磷酸盐缓冲盐水中且通过流式细胞仪(Attune,ThermoFisher)使用561nm激光激发和585+/-16nm滤光片发射进行分析,如下表中所示:

流式细胞仪设置

染料 Attune激光/滤光片 激光波长 发射滤光片(nm)
AF47 YL1 585 585/16

Attune NxT软件用于采集且FlowJo用于分析。为进行数据采集,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示585+/-16nm发射通道中的事件。在每种情况下,收集细胞或融合体门内的至少10,000个事件。为进行数据分析,将FSC和SSC通道设置在线性轴上,以确定代表细胞或融合体的群体。接着对此群体进行门控,且仅将此门内的事件用于以对数标度显示585+/-16nm发射通道中的事件。阴性对照585+/-16nm发射用于确定直方图上门的放置位置,以使得较少门包括小于1%阳性。使用以上列出的分析标准,亲本细胞分别在3小时、5小时和24小时的时间点展示19.9%、24.8%和82.5%若丹明-鬼笔环肽阳性事件。在3小时、5小时和24小时的时间点,融合体分别为44.6%、41.9%和34.9%若丹明-鬼笔环肽(图14D)。此实例表明融合体不随时间推移增加肌动蛋白的量,而亲本细胞增加所述量。

实例148:受体细胞组合物的免疫原性

1.IgG和IgM反应

此实例描述使用流式细胞测量术来定量针对受体细胞(与融合体融合的细胞)的抗体滴度。受体细胞的免疫原性的一个量度为抗体反应。识别受体细胞的抗体可以能够限制细胞活性或寿命的方式结合。在一个实施例中,受体细胞将不会被抗体反应靶向,或抗体反应将低于参考水平。

在此实例中,测试个体(例如人类、大鼠或猴)的抗受体细胞抗体滴度。另外,方案可适用于存在合适的表面标记的任何细胞类型。在此实例中,靶受体细胞为CD3+细胞。

每天用通过本申请中所述的任一种方法产生的融合体或PBS(阴性对照)治疗小鼠,持续5天。在最后一次治疗后28天,从接受融合体的小鼠和接受PBS治疗的小鼠收集外周血。将血液收集至含有5μM EDTA的1ml PBS中且立即混合以防止凝血。将试管保持于冰上且使用缓冲氯化铵(ACK)溶液去除红细胞。在用牛血清白蛋白封闭10分钟后,将细胞在4℃下在黑暗中用鼠类CD3-FITC抗体(Thermo Fisher目录号:11-0032-82)染色30分钟。在用PBS洗涤两次后,在LSR II(BD Biosciences,San Jose,CA.)上运行FACSDivaTM软件(BDBiosciences,San Jose,CA.)分析细胞,激光激发为488nm,且在530+/-30nm处收集发射。分选CD3+细胞。

接着通过将反应混合物与特异性针对小鼠IgM的Fc部分的PE结合的山羊抗体(BDBioscience)一起在4℃下培育45分钟而用IgM抗体对分选的CD3+细胞进行染色。值得注意的是,还可使用抗小鼠IgG1或IgG2二级抗体。将来自所有组的细胞用含有2%FCS的PBS洗涤两次且接着在FACS系统(BD Biosciences)上进行分析。通过使用对数扩增来收集荧光数据且表示为平均荧光强度。对来自用融合体治疗的小鼠和用PBS治疗的小鼠的分选的CD3细胞计算平均荧光强度。

低平均荧光强度指示针对受体细胞的低体液反应。预期用PBS治疗的小鼠具有低平均荧光强度。在一个实施例中,来自用融合体治疗的小鼠和用PBS治疗的小鼠的受体细胞的平均荧光强度将类似。

2.巨噬细胞吞噬作用

此实例描述通过吞噬作用分析来定量针对受体细胞的巨噬细胞反应。

受体细胞的免疫原性的一个量度为巨噬细胞反应。巨噬细胞参与吞噬作用,吞噬细胞且使得能够隔离和破坏外来侵入物,如细菌或死细胞。在一些实施例中,通过巨噬细胞吞噬受体细胞将降低受体细胞的活性。

在一个实施例中,巨噬细胞不靶向受体细胞。在此实例中,测试针对个体的受体细胞的巨噬细胞反应。另外,方案可适用于存在合适的表面标记的任何细胞类型。在此实例中,靶受体细胞为CD3+细胞。

每天用通过本申请中所述的任一种方法产生的融合体或PBS(阴性对照)治疗小鼠,持续5天。在最后一次治疗后28天,从接受融合体的小鼠和接受PBS治疗的小鼠收集外周血。将血液收集至含有5μM EDTA的1ml PBS中且立即混合以防止凝血。将试管保持于冰上且使用缓冲氯化铵(ACK)溶液去除红细胞。

在用牛血清白蛋白封闭10分钟后,将细胞在4℃下在黑暗中用鼠类CD3-FITC抗体(Thermo Fisher目录号:11-0032-82)染色30分钟。在用PBS洗涤两次后,在LSR II(BDBiosciences,San Jose,CA.)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)分析细胞,激光激发为488nm,且在530+/-30nm处收集发射。接着分选CD3+细胞。

根据以下方案运行吞噬作用分析以评估巨噬细胞介导的免疫清除。将巨噬细胞在收获后立即涂铺于共聚焦玻璃底培养皿中。将巨噬细胞在DMEM+10%FBS+1%P/S中培育1小时以附着。如方案中所指示,将适当数目的衍生自接受融合体和PBS的小鼠的分选和FITC染色的CD3+细胞添加至巨噬细胞,且培育2小时,例如如tools.thermofisher.com/content/sfs/manuals/mp06694.pdf中所述。

2小时后,将培养皿温和地洗涤且检查细胞内荧光。为了鉴别巨噬细胞,首先将细胞与Fc受体阻断抗体(eBioscence目录号14-0161-86,克隆体93)一起在冰上培育15分钟,以阻断标记的mAb与Fc受体的结合,Fc受体大量表达于巨噬细胞上。在此步骤后,添加抗F4/80-PE(ThermoFisher目录号12-4801-82,克隆体BM8)和抗CD11b-PerCP-Cy5.5(BDBiosciences目录号550993,克隆体M1/70)结合抗体以对巨噬细胞表面抗原染色。将细胞在4C下在黑暗中培育30分钟,接着离心且在PBS中洗涤。接着将细胞再悬浮于PBS中。接着对样品进行流式细胞测量术,且分别使用533nm和647nm激光激发通过F4/80-PE和CD11b-PerCP-Cy5.5的阳性荧光信号鉴别巨噬细胞。在对巨噬细胞进行门控后,通过488nm激光激发评估由吞噬的受体细胞发出的细胞内荧光。使用成像软件对吞噬阳性巨噬细胞的数目进行定量。数据被表示为吞噬指数=(吞噬细胞的总数/计数的巨噬细胞的总数)×(含有吞噬细胞的巨噬细胞的数目/计数的巨噬细胞的总数)×100。

低吞噬指数表明低吞噬作用和巨噬细胞靶向。预期用PBS治疗的小鼠具有低吞噬指数。在一个实施例中,衍生自用融合体治疗的小鼠和用PBS治疗的小鼠的受体细胞的吞噬指数将类似。

3.由PBMC溶解测量的细胞毒性

此实例描述用细胞溶解分析来定量针对受体细胞的PBMC反应。

受体细胞的免疫原性的一个量度为PBMC反应。在一个实施例中,细胞毒性介导的PBMC对受体细胞的细胞溶解为免疫原性的量度,因为溶解将降低(例如抑制或终止)融合体的活性。

在一个实施例中,受体细胞不引起PBMC反应。在此实例中,测试针对个体的受体细胞的PBMC反应。

另外,方案可适用于存在合适的表面标记的任何细胞类型。在此实例中,靶受体细胞为CD3+细胞。

每天用通过本申请中所述的任一种方法产生的融合体或PBS(阴性对照)治疗小鼠,持续5天。在最后一次治疗后28天,从接受融合体的小鼠和接受PBS治疗的小鼠收集外周血。将血液收集至含有5μM EDTA的1ml PBS中且立即混合以防止凝血。将试管保持于冰上且使用缓冲氯化铵(ACK)溶液去除红细胞。在将细胞于细胞染色缓冲液(Biolgend目录号:420201)中Fc封闭(Biolgend目录号:101319)10分钟之后,在4℃下在黑暗中用鼠类CD3:APC-Cy7抗体(Biolgend目录号:100330)或同型对照APC-Cy7(IC:APC-Cy7)抗体(Biolgend目录号:400230)对细胞染色30分钟。在用PBS洗涤两次后,在FACS Aria(BD Biosciences,San Jose,CA.)运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)上分析细胞,激光激发为640nm,且在780-/+60nm处收集发射,以使用同型对照APC-Cy7抗体标记的细胞设置阴性门,且接着分选和收集APC-Cy7阳性细胞。分选的CD3+细胞接着用CellMaskTMGreen质膜染色剂(CMG,ThermoFisher目录号:C37608)或DMSO(作为阴性对照)标记。

在从用融合体或PBS治疗的小鼠分离CD3+细胞之前7天,根据Crop等人《细胞移植(Cell transplantation)》(20):1547-1559;2011中的方法从用融合体或PBS治疗的小鼠分离PBMC,且在IL-2重组小鼠蛋白(R&D Systems目录号:402-ML-020)和CD3/CD28珠粒(ThermoFisher目录号:11456D)存在下在圆底96孔板中在37C下模拟7天。在第7天,将刺激的PBMC与CD3+/CMG+或CD3+/DMSO对照细胞共培育1、2、3、4、5、6、8、10、15、20、24、48小时,PBMC:CD3+/CMG+或PBMC:CD3+/DMSO对照细胞的涂铺比介于1000:1-1:1与1:1.25-1:1000范围内。阴性对照(一组孔)将仅接受CD3+/CMG+和CD3+/DMSO对照细胞,不接受PBMC。在培育后,将板离心且处理,以使其根据上文用鼠类CD3:APC-Cy7抗体或IC:APC-Cy7抗体标记。在用PBS洗涤两次后,将细胞再悬浮于PBS中,且在FACS Aria(APC-Cy7:640nm激光激发/发射收集于780-/+60nm处,和CMG 561nm激光激发/发射收集于585-/+16nm处)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)进行分析。FSC/SSC事件数据将接着首先用于对标记为“细胞”的事件设置门。此“细胞”门将接着用于显示事件,以对仅用IC:APC-Cy7/DMSO标记的640nm和561nm激光分析样品设置PMT电压。此样品还将用于对APC-Cy7和CMG两者的阴性细胞设置门。不接受任何PBMC的CD3+/CMG+细胞将接着用于对CD3+和CMG+细胞设置阳性门。

通过查看总细胞群体中CD3+/CMG+细胞的百分比来分析数据。当比较治疗组时,在PBMC:CD3+/CMG+细胞的任何给定的分析比下相对较低百分比的CD3+/CMG+细胞指示受体细胞溶解。在一个实施例中,衍生自用融合体治疗的小鼠和用PBS治疗的小鼠的受体细胞的CD3+/CMG+的百分比将类似。

4.NK细胞靶向

此实例描述用细胞溶解分析来定量针对受体细胞的自然杀手细胞反应。

受体细胞的免疫原性的一个量度为自然杀手细胞反应。在一个实施例中,细胞毒性介导的自然杀手细胞对受体细胞的细胞溶解是免疫原性的量度,因为溶解将降低(例如抑制或终止)融合体的活性。

在一个实施例中,受体细胞不引起自然杀手细胞反应。在此实例中,测试针对个体的受体细胞的自然杀手反应。另外,方案可适用于存在合适的表面标记的任何细胞类型。在此实例中,靶受体细胞为CD3+细胞。

每天用通过本申请中所述的任一种方法产生的融合体或PBS(阴性对照)治疗小鼠,持续5天。在最后一次治疗后28天,从接受融合体的小鼠和接受PBS治疗的小鼠收集外周血。将血液收集至含有5μM EDTA的1ml PBS中且立即混合以防止凝血。将试管保持于冰上且使用缓冲氯化铵(ACK)溶液去除红细胞。在将细胞于细胞染色缓冲液(Biolgend目录号:420201)中Fc封闭(Biolgend目录号:101319)10分钟之后,在4℃下在黑暗中用鼠类CD3:APC-Cy7抗体(Biolgend目录号:100330)或同型对照APC-Cy7抗体(Biolgend目录号:400230)对细胞染色30分钟。在用PBS洗涤两次后,在FACS Aria(BD Biosciences,SanJose,CA.)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)分析细胞,激光激发为640nm,且在780-/+60nm处收集发射,以使用同型对照APC-Cy7抗体标记的细胞设置阴性门,且接着分选和收集APC-Cy7阳性细胞。分选的CD3+细胞接着用CellMaskTMGreen质膜染色剂(CMG,ThermoFisher目录号:C37608)标记。

在从用融合体或PBS治疗的小鼠分离CD3+细胞之前7天,根据Crop等人《细胞移植(Cell transplantation)》(20):1547-1559;2011中的方法从用融合体或PBS治疗的小鼠分离NK细胞,且在IL-2重组小鼠蛋白(R&D Systems目录号:402-ML-020)和CD3/CD28珠粒(ThermoFisher目录号:11456D)存在下在圆底96孔板中在37C下模拟7天。在第7天,将刺激的NK细胞与CD3+/CMG+或CD3+/DMSO对照细胞共培育1、2、3、4、5、6、8、10、15、20、24、48小时,NK细胞:CD3+/CMG+或NK细胞:CD3+/DMSO对照细胞的涂铺比介于1000:1-1:1与1:1.25-1:1000范围内。阴性对照(一组孔)将仅接受CD3+/CMG+和CD3+/DMSO对照细胞,不接受NK细胞。在培育后,将板离心且处理,以使其根据上文用鼠类CD3:APC-Cy7抗体或IC:APC-Cy7抗体标记。在用PBS洗涤两次后,将细胞再悬浮于PBS中,且在FACS Aria(APC-Cy7:640nm激光激发/发射收集于780-/+60nm处,和CMG 561nm激光激发/发射收集于585-/+16nm处)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)进行分析。FSC/SSC事件数据将接着首先用于对标记为“细胞”的事件设置门。此“细胞”门将接着用于显示事件,以对仅用IC:APC-Cy7/DMSO标记的640nm和561nm激光分析样品设置PMT电压。此样品还将用于对APC-Cy7和CMG两者的阴性细胞设置门。不接受任何NK细胞的CD3+/CMG+细胞将接着用于对CD3+和CMG+细胞设置阳性门。

通过查看总细胞群体中CD3+/CMG+细胞的百分比来分析数据。当比较治疗组时,在NK细胞:CD3+/CMG+细胞的任何给定的分析比下相对较低百分比的CD3+/CMG+细胞指示受体细胞溶解。在一个实施例中,衍生自用融合体治疗的小鼠和用PBS治疗的小鼠的受体细胞的CD3+/CMG+的百分比将类似。

5.CD8 T细胞溶解

此实例描述用细胞溶解分析来定量针对受体细胞(与融合体融合的细胞)的CD8+T细胞反应。

受体细胞的免疫原性的一个量度为CD8+T细胞反应。在一个实施例中,细胞毒性介导的CD8+T细胞对受体细胞的细胞溶解为免疫原性的量度,因为溶解将降低(例如抑制或终止)融合体的活性。

在一个实施例中,受体细胞不引起CD8+T细胞反应。在此实例中,测试针对个体的受体细胞的CD8+T细胞反应。另外,方案可适用于存在合适的表面标记的任何细胞类型。在此实例中,靶受体细胞为CD3+细胞。

每天用通过本申请中所述的任一种方法产生的融合体或PBS(阴性对照)治疗小鼠,持续5天。在最后一次治疗后28天,从接受融合体的小鼠和接受PBS治疗的小鼠收集外周血。将血液收集至含有5μM EDTA的1ml PBS中且立即混合以防止凝血。将试管保持于冰上且使用缓冲氯化铵(ACK)溶液去除红细胞。在将细胞于细胞染色缓冲液(Biolgend目录号:420201)中Fc封闭(Biolgend目录号:101319)10分钟之后,在4℃下在黑暗中用鼠类CD3:APC-Cy7抗体(Biolgend目录号:100330)或同型对照APC-Cy7抗体(Biolgend目录号:400230)对细胞染色30分钟。在用PBS洗涤两次后,在FACS Aria(BD Biosciences,SanJose,CA.)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)分析细胞,激光激发为640nm,且在780-/+60nm处收集发射,以使用同型对照APC-Cy7抗体标记的细胞设置阴性门,且接着分选和收集APC-Cy7阳性细胞。分选的CD3+细胞接着用CellMaskTMGreen质膜染色剂(CMG,ThermoFisher目录号:C37608)标记。

在从用融合体或PBS治疗的小鼠分离CD3+细胞之前7天,根据Crop等人《细胞移植(Cell transplantation)》(20):1547-1559;2011中的方法从用融合体或PBS治疗的小鼠分离CD8+细胞,且在IL-2重组小鼠蛋白(R&D Systems目录号:402-ML-020)和CD3/CD28珠粒(ThermoFisher目录号:11456D)存在下在圆底96孔板中在37C下模拟7天。在第7天,将刺激的CD8+细胞与CD3+/CMG+或CD3+/DMSO对照细胞共培育1、2、3、4、5、6、8、10、15、20、24、48小时,CD8+细胞:CD3+/CMG+或CD8+细胞:CD3+/DMSO对照细胞的涂铺比介于1000:1-1:1与1:1.25-1:1000范围内。阴性对照(一组孔)将仅接受CD3+/CMG+和CD3+/DMSO对照细胞,不接受CD8+细胞。在培育后,将板离心且处理,以使其根据上文用鼠类CD3:APC-Cy7抗体或IC:APC-Cy7抗体标记。在用PBS洗涤两次后,将细胞再悬浮于PBS中,且在FACS Aria(APC-Cy7:640nm激光激发/发射收集于780-/+60nm处,和CMG 561nm激光激发/发射收集于585-/+16nm处)上运行FACSDivaTM软件(BD Biosciences,San Jose,CA.)进行分析。FSC/SSC事件数据将接着首先用于对标记为“细胞”的事件设置门。此“细胞”门将接着用于显示事件,以对仅用IC:APC-Cy7/DMSO标记的640nm和561nm激光分析样品设置PMT电压。此样品还将用于对APC-Cy7和CMG两者的阴性细胞设置门。不接受任何CD8+细胞的CD3+/CMG+细胞将接着用于对CD3+和CMG+细胞设置阳性门。

通过查看总细胞群体中CD3+/CMG+细胞的百分比来分析数据。当比较治疗组时,在CD8+细胞:CD3+/CMG+细胞的任何给定的分析比下相对较低百分比的CD3+/CMG+细胞指示受体细胞溶解。在一个实施例中,衍生自用融合体治疗的小鼠和用PBS治疗的小鼠的受体细胞的CD3+/CMG+的百分比将类似。

实例149:测量融合体中的GAPDH

此实例描述定量融合体中的甘油醛3-磷酸脱氢酶(GAPDH)的水平,和与亲本细胞相比,融合体中的GAPDH的相对水平。如实例114和154中所述地制备融合体。

根据制造商的说明书,使用用于GAPDH的标准市售ELISA(ab176642,Abcam)在亲本细胞和融合体中测量GAPDH。通过二喹啉甲酸分析类似地测量总蛋白水平。测量的GAPDH和蛋白质水平在下表中示出:

[蛋白质](mg/mL) [GAPDH](ng/mL) GAPDH:蛋白质(μg/g)
融合体 0.82 37.2 45.3
细胞 0.45 50.4 112.0

GAPDH:总蛋白比还显示于图41中。

实例150:融合体中的脂质与蛋白质的比

此实例描述定量融合体中的脂质质量与蛋白质质量的比。预期融合体可具有与有核细胞类似的脂质质量与蛋白质质量的比。如本文实例114和154中所述地制备融合体和亲本细胞。

使用市售的磷脂分析试剂盒(MAK122 Sigma St.Louis,MO)根据制造商的说明书,使用含胆碱的磷脂作为总脂质的子组来计算脂质含量。通过如本文所述的二喹啉甲酸分析来测量融合体的总蛋白含量。测量的磷脂水平、蛋白质水平和磷脂与蛋白质的比在图42和下表中示出:

磷脂(μM) 蛋白质(g/L) 磷脂:蛋白质(μmol/g)
融合体 115.6 0.82 141.0
细胞 47.9 0.45 106.4

实例151:融合体中的蛋白质与DNA的比

此实例描述定量融合体中的脂质质量与DNA质量的比。预期融合体可具有比细胞大得多的蛋白质质量与DNA质量的比。如实例114和154中所述地制备融合体。

通过如本文所述的二喹啉甲酸分析来测量融合体和细胞的总蛋白含量。在使用市售的分离试剂盒(#69504 Qiagen Hilden,Germany)根据制造商的说明书提取总DNA后,通过280nm处的吸收测量融合体和细胞的DNA质量。通过将总蛋白含量除以总DNA含量,得出典型融合体制剂在给定范围内的比来确定蛋白质与总核酸的比。测量的蛋白质水平、DNA水平和蛋白质与DNA的比在图43和下表中示出:

[蛋白质](mg/mL) [DNA](ng/μL) 蛋白质:DNA(g/g)
融合体 0.82 29.5 27.8
细胞 0.45 15.9 28.3

实例152:融合体中的脂质与DNA的比

此实例描述定量与亲本细胞相比,融合体中的脂质与DNA的比。在一个实施例中,与亲本细胞相比,融合体将具有更大的脂质与DNA的比。如先前在实例114和154中所述地制备融合体。

此比被定义为实例49中概述的脂质含量,且如实例50中所述地测定核酸含量。测量的脂质水平、DNA水平和脂质与DNA的比在图44和下表中示出:

[脂质](μM) [DNA](ng/μL) 脂质:DNA(μmol/mg)
融合体 115.6 29.5 3.92
细胞 47.9 15.9 3.01

实例153:通过发动蛋白介导的途径递送融合体

此实例描述通过发动蛋白介导的途径,基于融合体将Cre递送至受体细胞。简单来说,如本文所述,通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生囊封Cre的融合体,所述细胞在细胞表面上表达来自水泡性口炎病毒的包膜糖蛋白G(VSV-G)。接着如下地测定Cre递送对发动蛋白介导的途径的依赖性。

将工程化以表达“LoxP-GFP-stop-LoxP-RFP”盒的受体HEK-293T细胞在完全培养基中以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后二十四小时,将囊封Cre的融合体施用至受体LoxP-GFP-stop-LoxP-RFP HEK-293T细胞。

为了定量Cre递送依赖于发动蛋白介导的途径的程度,在融合体施用时,将一组受体细胞用120μM的发动蛋白抑制剂Dynasore处理,所述浓度足以部分抑制通过发动蛋白的内吞作用。将融合体与受体细胞一起在37℃和5%CO2下培育24小时。二十四小时后,将1μg/mL Hoechst 33342稀释于完全培养基中且与细胞一起在37℃和5%CO2下培育30分钟。在添加Hoescht后,使用自动显微镜(www.biotek.com/products/imaging-microscopy-automated-cell-imagers/lionheart-fx-automated-live-cell-imager/)对细胞成像。受体细胞的Hoechst荧光使用405nm LED和BFP滤光立方体成像。受体细胞的GFP荧光使用488nm LED和GFP滤光立方体成像。受体细胞的RFP荧光使用523nm LED和RFP滤光立方体成像。通过首先在阳性对照孔;即,用1.25μL Gesicles重组酶gesicles(Takara,目录号631449)处理的受体细胞上确立LED强度和积分时间来采集孔中的细胞的图像。

设定采集设置,以使得BFP、GFP和RFP强度处于最大像素强度值但不饱和。接着使用确立的设置对所关注的孔成像。通过自动聚焦在BFP通道上且接着使用GFP和RFP通道的已确立的焦平面将焦点设置在每个孔上。用随自动荧光显微镜提供的Gen5软件进行RFP阳性细胞的分析(参见https://www.biotek.com/products/software-robotics-software/gen5-microplate-reader-and-imager-software/)。

使用60μm宽度的滚球背景减除算法对图像进行预处理。GFP强度显著高于背景强度的细胞为阈值且排除太小或太大而无法成为GFP阳性细胞的区域。将相同分析步骤应用于RFP通道。接着将RFP阳性细胞(接受Cre重组酶的受体细胞)的数目除以GFP阳性细胞的总和(总受体细胞),以定量RFP阳性细胞的百分比,作为Cre递送的度量标准。

在不存在Dynasore的情况下,装载有Cre的融合体显示可观察水平的Cre递送,对应于总GFP阳性受体细胞中的82.1±4.5%RFP阳性细胞(图45)。如上所述,使用的Dynasore浓度足以部分抑制内吞作用。与此一致,已知通过内吞途径起作用的此实例中所用的VSV-G融合体在120μM Dynasore存在下被部分抑制,其中Cre递送的水平对应于68.5±5.5%RFP阳性细胞(图45)。未处理的受体细胞不显示任何明显的RFP阳性细胞。综合起来,这些数据说明基于融合体的Cre递送的发动蛋白依赖性。

实例154:测量融合体中的脂质组成

此实例描述定量融合体的脂质组成。预期融合体的脂质组成可与衍生其的细胞类似。脂质组成影响融合体和细胞的重要生物物理参数,如尺寸、静电相互作用和胶体特性。

脂质测量基于质谱。如本文所述地通过在10cm培养皿中瞬时转染VSV-G和GFP,接着在转染后48小时过滤和超速离心条件培养基以获得融合体,来制备融合体。与条件培养基并行地收获转染的细胞且用于进行分析。还从未用VSV-G或GFP转染的细胞收获外泌体。

如(Sampaio等人2011)所述,由Lipotype GmbH(Dresden,Germany)进行基于质谱的脂质分析。使用两步氯仿/甲醇程序来提取脂质(Ejsing等人2009)。用含有以下的内部脂质标准混合物加标样品:心磷脂16:1/15:0/15:0/15:0(CL)、神经酰胺18:1;2/17:0(Cer)、二酰甘油17:0/17:0(DAG)、己糖基神经酰胺18:1;2/12:0(HexCer)、溶血磷脂酸酯17:0(LPA)、溶血磷脂酰胆碱12:0(LPC)、溶血磷脂酰乙醇胺17:1(LPE)、溶血磷脂酰甘油17:1(LPG)、溶血磷脂酰肌醇17:1(LPI)、溶血磷脂酰丝氨酸17:1(LPS)、磷脂酸酯17:0/17:0(PA)、磷脂酰胆碱17:0/17:0(PC)、磷脂酰乙醇胺17:0/17:0(PE)、磷脂酰甘油17:0/17:0(PG)、磷脂酰肌醇16:0/16:0(PI)、磷脂酰丝氨酸17:0/17:0(PS)、胆固醇酯20:0(CE)、鞘磷脂18:1;2/12:0;0(SM)、三酰甘油17:0/17:0/17:0(TAG)和胆固醇D6(Chol)。

在提取之后,将有机相转移至输液板且在速度真空浓缩器中干燥。将第1步干提取物再悬浮于含7.5mM乙酸铵的氯仿/甲醇/丙醇(1:2:4,V:V:V)中,且将第2步干提取物再悬浮于甲胺/氯仿/甲醇的33%乙醇溶液(0.003:5:1;V:V:V)中。使用具有用于有机溶剂移液的防液滴控制(Anti Droplet Control)特征的Hamilton Robotics STARlet机器人平台进行所有液体处理步骤。

通过在配备有TriVersa NanoMate离子源(Advion Biosciences)的QExactive质谱仪(Thermo Scientific)上直接输注来分析样品。在单次采集中,以正离子和负离子模式分析样品,其中MS的分辨率为Rm/z=200=280000且MSMS实验的分辨率为Rm/z=200=17500。MSMS由包含列表触发,所述列表涵盖以1Da增量扫描的对应MS质量范围(Surma等人,2015)。将MS和MSMS数据组合,以监测作为铵加合物的CE、DAG和TAG离子;作为乙酸盐加合物的PC、PC O-;和作为去质子化阴离子的CL、PA、PE、PE O-、PG、PI和PS。仅MS用于监测作为去质子化阴离子的LPA、LPE、LPE O-、LPI和LPS;作为乙酸盐加合物的Cer、HexCer、SM、LPC和LPC O-,以及作为乙酰化衍生物的铵加合物的胆固醇(Liebisch等人2006)。

用基于LipidXplorer的内部开发的脂质鉴别软件来分析数据(Herzog等人2011;Herzog等人2012)。使用内部开发的数据管理系统来进行数据后处理和标准化。仅将信噪比>5,且信号强度比对应空白样品中高5倍的脂质鉴别考虑用于进一步的数据分析。

将融合体脂质组成相比于亲本细胞的脂质组成,其中将未检测到的脂质物质赋值为零。融合体和亲本细胞中鉴别的脂质物质在下表中示出:

Figure BDA0002356542560002791

如果≥亲本细胞的任何重复样品中鉴别的脂质物质的70%存在于融合体的任何重复样品中,且在那些鉴别的脂质中,融合体中的平均水平可为亲本细胞中的对应平均脂质物质水平的>25%,则预期融合体和亲本细胞可具有类似脂质组成。

实例155:测量融合体中的蛋白质组学组成

此实例描述定量融合体的蛋白质组成。预期融合体的蛋白质组成可与衍生其的亲本细胞类似。

通过实例114和154的方法如本文所述地制备融合体和亲本细胞。

将每个样品再悬浮于溶解缓冲液(6M脲、2M硫脲、4%CHAPS、50mM Tris pH 8.0)中,在冰浴上超声处理且穿过小口径注射器。将蛋白质在65℃下用10mM DTT还原15分钟且在室温下在黑暗中用15mM碘乙酰胺(IAA)烷基化30分钟。用另外的10mM DTT淬灭过量的IAA。接着通过添加8体积冰冷的丙酮+1体积冰冷的甲醇使蛋白质沉淀且在-80℃下放置过夜。通过离心使沉淀的蛋白质粒化。将其余的溶解缓冲液用200μl冰冷的甲醇洗涤3次。将蛋白质再悬浮于0.75M脲+50mM Tris pH 8.0+1μg胰蛋白酶/LysC中,且在搅拌下在37℃预消化4小时。将另外1μg胰蛋白酶/LysC添加至蛋白质且继续消化过夜。将肽通过逆相SPE纯化且通过LC-MS分析。

溶解每种条件的重复样品且合并于一个试管中。接着对此集合体进行与样品相同的制备方案,且通过LC-MS以信息依赖性采集进行分析,或在凝胶上分离,如下所述。

将总共100μg汇集的蛋白质置于2×Laemmli加样缓冲液中且在12.5%SDS PAGE上分离。用考马斯蓝对蛋白质进行短暂染色,且将蛋白质通道分成12部分。接着将每个部分用50%乙腈脱水且用10mM DTT再水合以进行还原。将凝胶片置于65℃下15分钟,且在室温下在黑暗中用15mM IAA烷基化30分钟。凝胶另外用50%乙腈脱水且在37℃下在具有1μg胰蛋白酶/LysC的50mM Tris pH 8中再水合过夜。通过脱水和超声处理从凝胶中提取肽。通过逆相SPE纯化肽且通过LC-MS/MS进行分析(每部分1×IDA)。

用ABSciex TripleTOF 5600(ABSciex,Foster City,CA,USA)进行采集,其配备有具有25μm iD毛细管的电喷雾接口且与EksigentμUHPLC(Eksigent,Redwood City,CA,USA)耦接。Analyst TF 1.7软件用于控制仪器以及进行数据处理和采集。对于来自凝胶的12个部分或未分离的集合体,以信息依赖性采集(IDA)模式进行采集。以SWATH采集模式分析样品。对于IDA模式,将源电压设置为5.2kV且维持于225℃下,将气帘气设置于27psi,将气体一设置于12psi且将气体二设置于10psi。对于SWATH模式,将源电压设置为5.5kV且维持于225℃下,将气帘气设置为25psi,将气体一设置于16psi且将气体二设置于15psi。在维持于60℃下的0.3mm i.d.,2.7μm粒子,150mm长的逆相HALO C18-ES柱(Advance MaterialsTechnology,Wilmington,DE)上进行分离。样品通过环路过满注射至5μL环路中。对于60分钟LC梯度,移动相由流动速率为3μL/min的溶剂A(0.2%v/v甲酸和3%DMSO v/v于水中)和溶剂B(0.2%v/v甲酸和3%DMSO于EtOH中)组成。

为了产生用于样品分析的离子库,在通过IDA运行生成的wiff文件上运行ProteinPilot软件。在Peakview软件(ABSciex)上使用此数据库,以使用3个跃迁/肽和15个肽/蛋白质对每个样品中的蛋白质进行定量。为了使定量的蛋白质的数目最大化,在可公开获得的人类SWATH数据库(Atlas)上以相同参数定量样品。如果由Peakview计算的得分高于1.5且FDR<1%,则将肽视为被充分测量。使用来自两个数据库的蛋白质名称,将来自每个数据库的定量合并为一个最终定量。通过在相比于每个样品的总信号的平均值时考虑所述样品中的每种蛋白质的总信号,计算每个样品的校正系数。

将融合体蛋白质组学组成相比于亲本细胞蛋白质组学组成。当>33%的鉴别的蛋白质存在于融合体中时,在融合体与亲本细胞之间观察到类似的蛋白质组学组成,且在那些鉴别的蛋白质中,水平为亲本细胞中的对应蛋白质水平的>25%,如下表中所示。

Figure BDA0002356542560002811

实例156:定量每个融合体的内源或合成蛋白水平

此实例描述定量融合体中的内源或合成蛋白货物。融合体可在一些情况下包含内源或合成蛋白货物。此实例中描述的融合体或亲本细胞被工程化以改变内源蛋白的表达或表达介导治疗或新颖细胞功能的合成货物。

通过实例114和154的方法如本文所述地制备表达GFP的融合体和亲本细胞。使用市售的ELISA试剂盒(ab171581 Abcam Cambridge,United Kingdom)根据制造商的说明书完成融合体中的GFP的定量。使用NanoSight NS300(Malvern Instruments,Malvern,Worcestershire,United Kingdom)通过纳米粒子跟踪分析来进行融合体定量。结果显示于下表中。

浓度(#/mL)
GFP蛋白 4.41×10<sup>13</sup>
融合体 2.66×10<sup>11</sup>
GFP:融合体 165.8

预期融合体可具有每个融合体至少1、2、3、4、5、10、20、50、100或更多个蛋白质药剂分子。在一个实施例中,融合体将具有每个融合体166个蛋白质药剂分子。

实例157:测量融合体中的外泌体蛋白的标记

此分析描述定量已知为外泌体的特异性标记的蛋白质的比例。

通过实例114和154的方法如本文所述地制备融合体。通过实例114和154的方法如关于融合体在本文所述地制备外泌体,不同之处在于亲本细胞未用VSV-G或GFP转染。如本文实例42中所述地进行通过质谱对融合体和外泌体的蛋白质定量。

分析所得的蛋白质定量数据,以确定已知外泌体标记CD63的蛋白质水平和比例。通过将质谱的亮度值加1、通过log10转换且计算跨重复样本的平均值来计算每组的平均对数强度。结果显示于图46中。

实例158:测量融合体中的钙联蛋白

此分析描述定量融合体中的钙联蛋白(CNX)水平,和与亲本细胞相比,融合体中的CNX的相对水平。

如本文实例114和154中所述地制备融合体和亲本细胞。使用根据实例42的方法进行的质谱来测量钙联蛋白和总蛋白。针对亲本细胞和融合体所测定的钙联蛋白信号强度在图47中示出。

在实施例中,使用此分析,融合体中的CNX的平均分数含量(如本文实例42中所述地计算)将为<2.43×10-4

在一个实施例中,从亲本细胞到制剂,以ng/μg计的钙联蛋白/总蛋白的减少将大于88%。

实例159:融合体中的脂质与DNA的比

此实例描述定量与亲本细胞相比,融合体中的脂质与DNA的比。在一个实施例中,与亲本细胞相比,融合体将具有更大的脂质与DNA的比。如先前在实例114和154中所述地制备融合体。

此比被定义为实例49中概述的脂质含量,且如实例50中所述地测定核酸含量。如图48和下表中所示,发现融合体展现比亲本细胞更大的脂质:DNA比。

[脂质](μM) [DNA](ng/μL) 脂质:DNA(μmol/mg)
融合体 115.6 29.5 3.92
细胞 47.9 15.9 3.01

实例160:分析融合体上的表面标记

此分析描述鉴别融合体上的表面标记。

如本文实例114和154中所述地制备融合体。如本文实例114和154中所述的通过质谱来测量磷脂酰丝氨酸。融合体中相对于总脂质的磷脂酰丝氨酸的量被确定为比亲本细胞中相对于总脂质的磷脂酰丝氨酸的量大121%,如下表中所示。

Figure BDA0002356542560002831

实例161:分析融合体中的病毒衣壳蛋白

在此实例中,分析了样品制剂的组成且评估了衍生自病毒衣壳来源的蛋白质的比例。

通过实例114和154的方法如本文所述地制备融合体。如本文实例42中所述地进行通过质谱对融合体的蛋白质定量。如本文实例42中所述地计算病毒衣壳蛋白的分数含量,将其在融合体样品中取平均值且表示为%。

使用此方法,发现样品含有0.05%病毒衣壳蛋白,如下表中所示。唯一检测到的病毒衣壳蛋白为兔内源性慢病毒(RELIK)衣壳与亲环素A(PDB 2XGY|B)的复合物。

Figure BDA0002356542560002832

实例162:定量融合体中的融合剂蛋白比

此实例描述定量融合体中的融合剂蛋白与总蛋白或其它所关注蛋白的比。其它所关注蛋白可包括但不限于EGFP、CD63、ARRDC1、GAPDH、钙联蛋白(CNX)和TSG101。通过实例114和154的方法如本文所述地制备融合体。如本文实例42中所述地进行通过质谱对融合体的蛋白质定量。如本文实例42中所述地计算所有蛋白质的定量,将其在融合体样品中取平均值且表示为分数。

如下表中所示,发现融合剂与EGFP的比为156.9,与CD63的比为2912.0,与ARRDC1的比为664.9,与GAPDH的比为69.0,与CNX的比为558.4,且与TSG101的比为3064.1。

蛋白质 原始MS强度 融合剂:蛋白质比
VSV-G 1.29×10<sup>8</sup> N/A
总蛋白 9.46×10<sup>8</sup> 0.136
EGFP 8.22×10<sup>5</sup> 156.9
CD63 4.43×10<sup>4</sup> 2912.0
ARRDC1 1.94×10<sup>5</sup> 664.9
GAPDH 1.87×10<sup>6</sup> 69.0
CNX 2.31×10<sup>5</sup> 558.4
TSG101 4.21×10<sup>4</sup> 3064.1

实例163:定量融合体中的内源和合成蛋白比

此实例描述定量融合体中的内源或合成蛋白货物相对于总蛋白或其它所关注蛋白。其它所关注蛋白可包括但不限于VSV-G、CD63、ARRDC1、GAPDH、钙联蛋白(CNX)或TSG101。通过实例114和154的方法如本文所述地制备融合体。如本文实例42中所述地进行通过质谱对融合体的蛋白质定量。如本文实例42中所述地计算所有蛋白质的定量,将其在融合体样品中取平均值且表示为分数。

如下表中所示,发现合成蛋白货物与VSV-G的比为6.37×10-3,与CD63的比为18.6,与ARRDC1的比为4.24,与GAPDH的比为0.44,与CNX的比为3.56,且与TSG101的比为19.52。

Figure BDA0002356542560002841

Figure BDA0002356542560002851

实例164:融合体中富集的脂质组成

此实例描述定量融合体、亲本细胞和外泌体的脂质组成。预期相对于衍生融合体的细胞,融合体的脂质组成可富集和/或耗尽特定脂质。脂质组成影响融合体和细胞的重要生物物理参数,如尺寸、静电相互作用和胶体特性。

如实例114和154中所述地测量脂质组成。如本文所述地通过在10cm培养皿中瞬时转染VSV-G和GFP,接着在转染后48小时过滤和超速离心条件培养基以获得融合体,来制备融合体。与条件培养基并行地收获转染的细胞且用于进行分析。如关于融合体在本文所述地制备外泌体,不同之处在于亲本细胞未用VSV-G或GFP转染。

融合体、外泌体和亲本细胞的脂质组成在图49A-49B中示出。相比于亲本细胞,融合体富集了胆固醇酯、游离胆固醇、醚连接的溶血磷脂酰乙醇胺、溶血磷脂酰丝氨酸、磷脂酸酯、醚连接的磷脂酰乙醇胺、磷脂酰丝氨酸和鞘磷脂。相比于亲本细胞,融合体耗尽了神经酰胺、心磷脂、溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、溶血磷脂酰甘油、溶血磷脂酰肌醇、醚连接的磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰甘油、磷脂酰肌醇和三酰甘油。相比于外泌体,融合体富集了胆固醇酯、神经酰胺、二酰甘油、溶血磷脂酸酯和磷脂酰乙醇胺、三酰甘油。相比于外泌体,融合体耗尽了游离胆固醇、己糖基神经酰胺、溶血磷脂酰胆碱、醚连接的溶血磷脂酰胆碱、溶血磷脂酰乙醇胺、醚连接的溶血磷脂酰乙醇胺和溶血磷脂酰丝氨酸。

实例165:测量融合体的区室特异性蛋白质组含量

此实例描述定量已知衍生自融合体、融合体亲本细胞和外泌体中的特定细胞区室的蛋白质的比例。

通过实例114和154的方法如本文所述地制备融合体和亲本细胞。通过实例114和154的方法如关于融合体在本文所述地制备外泌体,不同之处在于亲本细胞未用VSV-G或GFP转染。如本文实例42中所述地进行通过质谱对融合体和外泌体的蛋白质定量。分析所得的蛋白质定量数据,以确定已知外泌体、内质网、核糖体、细胞核和线粒体蛋白的蛋白质水平和比例,如由基因本体细胞区室注释术语(外泌体:GO:0070062,内质网:GO:0005783,核糖体:GO:0005840、GO:0022625、GO:0022626、GO:0022627、GO:0044391、GO:0042788、GO:0000313)以证据代码IDA(直接分析推断)所注释。对融合体样品、外泌体样品和亲本细胞确定每个样品中区室特异性蛋白相对于总蛋白的比率。

如图50中所示,发现相比于亲本细胞和外泌体,融合体耗尽了内质网蛋白。还发现相比于外泌体,融合体耗尽了外泌体蛋白。相比于亲本细胞,融合体耗尽了线粒体蛋白。相比于亲本细胞,融合体富集了核蛋白。相比于亲本细胞和外泌体,融合体富集了核糖体蛋白。

实例166:测量融合体中的TSG101和ARRDC1含量

此实例描述定量已知在从细胞释放融合体中重要的蛋白质的比例。

通过实例114和154的方法如本文所述地制备融合体和亲本细胞。通过实例114和154的方法如关于融合体在本文所述地制备外泌体,不同之处在于亲本细胞未用VSV-G或GFP转染。如本文实例42中所述地进行通过质谱对融合体和外泌体的蛋白质定量。分析所得的蛋白质定量数据,以确定蛋白质TSG101和ARRDC1的蛋白质水平和比例。通过将质谱的亮度值加1、通过log10转换且计算跨重复样本的平均值来计算每组的平均对数强度。将相对于外泌体或亲本细胞,融合体中的TSG101或ARRDC1的总蛋白含量的百分比确定为每个样品的TSG101或ARRDC1的平均对数强度,除以相同样品中所有蛋白质的强度的总和,在重复样本中取平均值且表示为%。

如图51中所示,发现ARRDC1以比亲本细胞或外泌体中更高的水平(呈总蛋白含量的百分比形式)存在于融合体中。融合体中呈总蛋白含量的百分比形式的ARRDC1水平为至少0.02%。发现TSG101以比亲本细胞或外泌体中更高的水平(呈总蛋白含量的百分比形式)存在于融合体中。融合体中呈总蛋白含量的百分比形式的TSG101水平为至少0.004%。

实例167:测量融合体的预先存在的血清灭活

此实例描述使用体外递送分析定量融合体的预先存在的血清灭活。

融合体的免疫原性的一个量度为血清灭活。融合体的血清灭活可由抗体介导的中和或补体介导的降解所致。在一个实施例中,本文所述的融合体的一些受体将在其血清中具有结合且灭活融合体的因子。

在此实例中,对未用融合体治疗的小鼠评估血清中灭活融合体的因子的存在。值得注意的是,通过对方案进行优化,本文所述的方法可同样适用于人类、大鼠、猴。阴性对照为热灭活的小鼠血清,且阳性对照为衍生自小鼠的血清,所述小鼠已接受从异种源细胞产生的融合体的多次注射。通过收集新鲜全血且使其完全凝血几个小时来从小鼠收集血清。通过离心使凝块粒化且去除血清上清液。将阴性对照样品在56℃下加热1小时。血清可以等分试样冷冻。

测试融合体的一个剂量,在所述剂量下,受体群体中50%的细胞接受融合体中的有效负载。融合体可通过本文所述的任何其它实例产生,且可含有本文所述的任何有效负载。本文还描述了许多用于分析融合体递送有效负载至受体细胞的方法。在此特定实例中,有效负载为Cre蛋白且受体细胞为RPMI8226细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和递送的Cre(作为标记)。将50%的受体细胞呈RFP阳性的鉴别的剂量用于进一步实验。在其它实施例中,将50%的受体细胞接受有效负载的鉴别的剂量用于进一步实验。在优选实施例中,50%的受体细胞接受有效负载的鉴别的剂量为跨融合体类似的。

为了评估融合体的血清灭活,将融合体1:5稀释至正常或热灭活的血清(或含有10%热灭活的FBS的培养基,作为无血清对照)中,且将混合物在37C下培育1小时。在培育后,将培养基添加至反应物以进行另外的1:5稀释,且接着以1:10的比连续稀释两次。在此步骤之后,融合体应以先前鉴别的剂量存在,在所述剂量下,50%的受体细胞已接受有效负载(例如为RFP阳性)。

接着将已暴露于血清的融合体与受体细胞一起培育。计算接受有效负载且因此为RFP阳性的细胞的%。在一些实施例中,接受有效负载的细胞的%在已与来自未用融合体治疗的小鼠的血清和热灭活的血清一起培育的融合体样品之间没有差异,表明不存在融合体的血清灭活。在一些实施例中,接受有效负载的细胞的%在已与来自未用融合体治疗的小鼠的血清一起培育的融合体样品和无血清对照培育之间没有差异,表明不存在融合体的血清灭活。在一些实施例中,已与阳性对照血清一起培育的融合体样品中的接受有效负载的细胞的%低于已与来自未用融合体治疗的小鼠的血清一起培育的融合体样品中的所述%,表明不存在融合体的血清灭活。

实例168:在多次施用后测量融合体的血清灭活

此实例描述在多次施用融合体后,使用体外递送分析来定量融合体的血清灭活。预期修饰的融合体(例如通过本文所述的方法修饰)可在多次(例如超过一次,例如2次或更多次)施用修饰的融合体后具有降低的(例如相比于施用未修饰的融合体降低的)血清灭活。在一些情况下,在多次施用后,本文所述的融合体不会被血清灭活。

融合体的免疫原性的一个量度为血清灭活。在一个实施例中,重复注射融合体可使得产生抗融合体抗体,例如识别融合体的抗体。在一个实施例中,识别融合体的抗体可以能够限制融合体活性或寿命且介导补体降解的方式结合。

在此实例中,在一次或多次施用融合体之后检查血清灭活。通过先前实例中的任一个产生融合体。在此实例中,融合体由以下产生:被慢病毒介导的HLA-G表达修饰的HEK293细胞(下文称为HEK293-HLA-G),和被慢病毒介导的空载体表达修饰的HEK293(下文称为HEK293)。在一些实施例中,融合体衍生自表达其它免疫调节蛋白的细胞。

血清取自不同的群体:全身和/或局部注射1、2、3、5、10次媒剂(未用融合体治疗的组)、HEK293-HLA-G融合体或HEK293融合体注射液的小鼠。通过收集新鲜全血且使其完全凝血几个小时来从小鼠收集血清。通过离心使凝块粒化且去除血清上清液。阴性对照为热灭活的小鼠血清。将阴性对照样品在56℃下加热1小时。血清可以等分试样冷冻。

测试融合体的一个剂量,在所述剂量下,受体群体中50%的细胞接受融合体中的有效负载。融合体可通过本文所述的任何其它实例产生,且可含有本文所述的任何有效负载。本文还描述了许多用于分析融合体递送有效负载至受体细胞的方法。在此特定实例中,有效负载为Cre蛋白且受体细胞为RPMI8226细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和递送的Cre(作为标记)。将50%的受体细胞呈RFP阳性的鉴别的剂量用于进一步实验。在其它实施例中,将50%的受体细胞接受有效负载的鉴别的剂量用于进一步实验。

为了评估融合体的血清灭活,将融合体1:5稀释至正常或热灭活的血清(或含有10%热灭活的FBS的培养基,作为无血清对照)中,且将混合物在37C下培育1小时。在培育后,将培养基添加至反应物以进行另外的1:5稀释,且接着以1:10的比连续稀释两次。在此步骤之后,融合体应以先前鉴别的剂量存在,在所述剂量下,50%的受体细胞已接受有效负载(例如为RFP阳性)。预期50%的受体细胞接受有效负载的鉴别的剂量可为跨融合体类似的。

接着将已暴露于血清的融合体与受体细胞一起培育。计算接受有效负载且因此为RFP阳性的细胞的%。接受有效负载的细胞的%在已与来自用HEK293-HLA-G融合体治疗的小鼠的血清和热灭活的血清一起培育的融合体样品之间可能没有差异,表明不存在融合体的血清灭活或适应性免疫反应。接受有效负载的细胞的%在从用HEK293-HLA-G融合体治疗1、2、3、5或10次的小鼠培育的融合体样品之间可能没有差异,其将表明不存在融合体的血清灭活或适应性免疫反应。在一些情况下,接受有效负载的细胞的%在已与来自用媒剂治疗的小鼠和来自用HEK293-HLA-G融合体治疗的小鼠的血清一起培育的融合体样品之间没有差异,表明不存在融合体的血清灭活或适应性免疫反应。在一些情况下,用HEK293衍生的融合体的接受有效负载的细胞的%少于HEK293-HLA-G融合体,表明不存在HEK293-HLA-G融合体的血清灭活或适应性免疫反应。

实例169:测量融合体的补体靶向

此实例描述使用体外分析来定量针对融合体的补体活性。预期本文所述的修饰的融合体可相比于对应未修饰的融合体诱导降低的补体活性。

在此实例中,对来自小鼠的血清评估针对融合体的补体活性。实例测量补体C3a的水平,补体C3a为所有补体途径的中心节点。值得注意的是,通过对方案进行优化,本文所述的方法可同样适用于人类、大鼠、猴。

在此实例中,通过前述实例中的任一个来产生融合体。融合体由以下产生:被慢病毒介导的补体调节蛋白DAF的表达修饰的HEK293细胞(HEK293-DAF融合体)或不表达补体调节蛋白的HEK 293细胞(HEK293融合体)。还可使用其它补体调节蛋白,如结合衰变加速因子的蛋白(DAF,CD55),例如因子H(FH)样蛋白-1(FHL-1),例如C4b结合蛋白(C4BP),例如补体受体1(CD35),例如膜辅因子蛋白(MCP,CD46),例如Profectin(CD59),例如抑制经典和旁路补体途径CD/C5转化酶的蛋白,例如调节MAC装配的蛋白。

从未治疗的小鼠、施用HEK293-DAF融合体的小鼠或施用HEK293融合体的小鼠回收血清。通过收集新鲜全血且使其完全凝血几个小时来从小鼠收集血清。通过离心使凝块粒化且去除血清上清液。阴性对照为热灭活的小鼠血清。将阴性对照样品在56℃下加热1小时。血清可以等分试样冷冻。

测试不同融合体的一个剂量,在所述剂量下,受体群体中50%的细胞接受融合体中的有效负载。融合体可通过本文所述的任何其它实例产生,且可含有本文所述的任何有效负载。本文还描述了许多用于分析融合体递送有效负载至受体细胞的方法。在此特定实例中,有效负载为Cre蛋白且受体细胞为RPMI8226细胞,其在CMV启动子下稳定表达“LoxP-GFP-stop-LoxP-RFP”盒,所述启动子在通过Cre重组后从GFP转换为RFP表达,表明融合和递送的Cre(作为标记)。将50%的受体细胞呈RFP阳性的鉴别的剂量用于进一步实验。在其它实施例中,将50%的受体细胞接受有效负载的鉴别的剂量用于进一步实验。在优选实施例中,50%的受体细胞接受有效负载的鉴别的剂量为跨融合体类似的。

开始于50%的受体细胞接受有效负载的融合体剂量的融合体于磷酸盐缓冲盐水(PBS,pH 7.4)中的两倍稀释液与来自用相同融合体治疗的小鼠或未治疗的小鼠的血清的1:10稀释液混合(分析体积,20μl),且在37℃下培育1小时。将样品进一步以1:500稀释且用于特异性针对C3a的酶联免疫吸附分析(ELISA)。ELISA为由LifeSpan BioSciences Inc出售的小鼠补体C3a ELISA试剂盒产品LS-F4210,其测量样品中的C3a的浓度。跨越从小鼠分离的血清比较存在200pg/ml C3a的融合体的剂量。

在一些情况下,相比于与HEK293小鼠血清一起培育的HEK293融合体,与HEK-293DAF小鼠血清一起培育的HEK293-DAF融合体的存在200pg/ml C3a的融合体的剂量更大,表明相比于HEK293-DAF融合体,用HEK293融合体治疗的小鼠中靶向融合体的补体活性更大。在一些情况下,相比于与未治疗的小鼠血清一起培育的HEK293融合体,与未治疗的小鼠血清一起培育的HEK293-DAF融合体的存在200pg/ml C3a的融合体的剂量更大,表明相比于HEK293-DAF融合体,用HEK293融合体治疗的小鼠中靶向融合体的补体活性更大。

实例170:将ARRDC1并入融合体生产方案中

此实例描述将含有抑制蛋白域的蛋白1(ARRDC1)用于融合体生产方案中,且描述AARDC1对融合体数目和通过所得融合体递送Cre的影响。通过收获和制备由HEK-293T细胞产生的融合体的标准程序来产生囊封Cre的融合体,所述细胞表达细胞表面上的尼帕病毒附着(NiV-G)和融合(NiV-F)包膜糖蛋白、噬菌体P1重组酶Cre和ARRDC1蛋白。对照融合体由仅表达Cre以及NiV-G和NiV-F糖蛋白的HEK-293T细胞产生。接着如下地确定ARRDC1对融合体递送Cre的能力和融合体数目的影响。

将工程化以表达“LoxP-GFP-stop-LoxP-RFP”盒的受体HEK-293T细胞在完全培养基中以30,000个细胞/孔涂铺于黑色的透明底96孔板中。在涂铺受体细胞后二十四小时,将一定范围的囊封Cre的融合体量施用至受体LoxP-GFP-stop-LoxP-RFP HEK-293T细胞。

为了定量通过将ARRDC1并入生产方案中而增强Cre递送的程度,将一组受体细胞用从被ARRDC1转染的细胞产生的融合体(NiV-G+NiV-F+NLS-Cre+ARRDC1)处理,且一组细胞用对照融合体(NiV-G+NiV-F+NLS-Cre)处理。将融合体与受体细胞一起在37℃和5%CO2下培育24小时。作为对照,另一组受体细胞也用1.25μL cer重组酶Gesicles(Takara,目录号631449)处理。二十四小时后,将1μg/mL Hoechst 33342稀释于完全培养基中且与细胞一起在37℃和5%CO2下培育30分钟。

在添加Hoescht后,通过流式细胞测量术来分析细胞。简单来说,将受体细胞样品解离,收集且用1×PBS缓冲液洗涤三次,且再悬浮于1×PBS缓冲液中,且通过流式细胞仪(Attune,ThermoFisher)分析,分别使用405nm、488nm和561nm激光激发,和440/50BP(Hoescht)、530/30BP(GFP)和585/16BP(RFP)发射滤光片组用于采集。Attune NxT软件用于采集且FlowJo软件用于分析。为进行数据采集和分析,将FSC和SSC通道设置在线性轴上,以确定代表受体细胞的群体。接着对此群体进行门控,且对于每种条件收集细胞门内的至少10,000个事件。接着对Hoescht(440/50BP)发射通道中代表受体细胞的群体进行门控,且此门用于显示GFP(530/30BP)事件。接着对代表GFP+受体细胞的群体进行门控,且此门用于显示RFP(585/16BP)事件。接着通过首先基于未处理的细胞设置阴性门且基于用Cre重组酶Gesicles处理的RFP阳性细胞设置阳性门,将RFP阳性细胞(接受Cre的受体细胞)定量为Cre递送的度量标准。在最高剂量下,从用ARRDC1转染的细胞产生的装载有Cre的融合体显示可观察水平的Cre递送,对应于总GFP阳性受体细胞中的9.2%RFP阳性细胞(图52A)。然而,在不存在ARRDC1的情况下,Cre的递送大幅降低,其中递送水平对应于1.8%RFP阳性细胞(图52A)。未处理的受体细胞不显示任何明显的RFP阳性细胞。结合起来,这些数据说明ARRDC1增强基于融合体的Cre递送的能力。

使用荧光纳米粒子跟踪分析(fNTA),从用ARRDC1转染的细胞产生的融合体展现2.8×1011个粒子/毫升的浓度,而在不存在ARRDC1的情况下产生的融合体展现1.2×1011个粒子/毫升的浓度(图52B),表明生产细胞中存在ARRDC1使得产生更多CellMask Orange+(fNTA)粒子。

269页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:岩藻糖基转移酶及其在生产岩藻糖基化低聚糖中的用途

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!